Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Quaternions space“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Quaternions space" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Quaternions space"
Miškinis, P. „ON THE POSSIBLE EXISTENCE OF NEW FERMIONIC DEGREES OF FREEDOM IN D = 6“. Mathematical Modelling and Analysis 8, Nr. 2 (30.06.2003): 155–64. http://dx.doi.org/10.3846/13926292.2003.9637220.
Der volle Inhalt der QuelleGe, Q. J. „On the Matrix Realization of the Theory of Biquaternions“. Journal of Mechanical Design 120, Nr. 3 (01.09.1998): 404–7. http://dx.doi.org/10.1115/1.2829166.
Der volle Inhalt der QuelleDzwonkowski, Mariusz, und Roman Rykaczewski. „Quaternion Feistel Cipher with an Infinite Key Space Based on Quaternion Julia Sets“. Journal of Telecommunications and Information Technology, Nr. 4 (30.12.2015): 15–21. http://dx.doi.org/10.26636/jtit.2015.4.979.
Der volle Inhalt der QuellePuleko, I. V., O. V. Andreev, O. F. Dubina, V. O. Chumakevych und A. S. Palamarchuk. „MODEL OF MOTION OF UNMANNED AERIAL VEHICLES BASED ON DUAL QUATERNION ALGEBRA“. Проблеми створення, випробування, застосування та експлуатації складних інформаційних систем, Nr. 23 (28.12.2022): 52–61. http://dx.doi.org/10.46972/2076-1546.2022.23.04.
Der volle Inhalt der QuelleKUMAR, AWNIYA, SUNIL KUMAR SINGH und SHEO KUMAR SINGH. „A Note on Moritoh Transforms“. Creative Mathematics and Informatics 33, Nr. 2 (14.05.2024): 185–201. http://dx.doi.org/10.37193/cmi.2024.02.05.
Der volle Inhalt der QuelleGogberashvili, Merab. „(2 + 1)-Maxwell Equations in Split Quaternions“. Physics 4, Nr. 1 (17.03.2022): 329–63. http://dx.doi.org/10.3390/physics4010023.
Der volle Inhalt der QuelleATASOY, Ali, und Faik BABADA˘G. „A new Approach to Hyper Dual Split Quaternions with Different Polar Representation“. General Letters in Mathematics 14, Nr. 3 (September 2024): 75–82. http://dx.doi.org/10.31559/glm2024.14.3.4.
Der volle Inhalt der QuelleEtzel, K. R., und J. M. McCarthy. „Interpolation of Spatial Displacements Using the Clifford Algebra of E4“. Journal of Mechanical Design 121, Nr. 1 (01.03.1999): 39–44. http://dx.doi.org/10.1115/1.2829427.
Der volle Inhalt der QuelleWeng, Zi-Hua. „Forces in the complex octonion curved space“. International Journal of Geometric Methods in Modern Physics 13, Nr. 06 (15.06.2016): 1650076. http://dx.doi.org/10.1142/s0219887816500766.
Der volle Inhalt der QuelleCansu, Gizem, Yusuf Yaylı und İsmail Gök. „A new quaternion valued frame of curves with an application“. Filomat 35, Nr. 1 (2021): 315–30. http://dx.doi.org/10.2298/fil2101315c.
Der volle Inhalt der QuelleDissertationen zum Thema "Quaternions space"
Kassalias, Ioannis. „Attitude determination for the three-axis spacecraft simulator (TASS) by application of particle filtering techniques“. Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2005. http://library.nps.navy.mil/uhtbin/hyperion/05Jun%5FKassalias.pdf.
Der volle Inhalt der QuelleSalgueiro, Filipe Nuno Ricardo. „Nonlinear pose control and estimation for space proximity operations: an approach based on dual quaternions“. Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/53055.
Der volle Inhalt der QuelleParcollet, Titouan. „Quaternion neural networks A survey of quaternion neural networks - Chapter 2 Real to H-space Autoencoders for Theme Identification in Telephone Conversations - Chapter 7“. Thesis, Avignon, 2019. http://www.theses.fr/2019AVIG0233.
Der volle Inhalt der QuelleIn the recent years, deep learning has become the leading approach to modern artificial intelligence (AI). The important improvement in terms of processing time required for learning AI based models alongside with the growing amount of available data made of deep neural networks (DNN) the strongest solution to solve complex real-world problems. However, a major challenge of artificial neural architectures lies on better considering the high-dimensionality of the data.To alleviate this issue, neural networks (NN) based on complex and hypercomplex algebras have been developped. The natural multidimensionality of the data is elegantly embedded within complex and hypercomplex neurons composing the model. In particular, quaternion neural networks (QNN) have been proposed to deal with up to four dimensional features, based on the quaternion representation of rotations and orientations. Unfortunately, and conversely to complex-valued neural networks that are nowadays known as a strong alternative to real-valued neural networks, QNNs suffer from numerous limitations that are carrefuly addressed in the different parts detailled in this thesis.The thesis consists in three parts that gradually introduce the missing concepts of QNNs, to make them a strong alternative to real-valued NNs. The first part introduces and list previous findings on quaternion numbers and quaternion neural networks to define the context and strong basics for building elaborated QNNs.The second part introduces state-of-the-art quaternion neural networks for a fair comparison with real-valued neural architectures. More precisely, QNNs were limited by their simple architectures that were mostly composed of a single and shallow hidden layer. In this part, we propose to bridge the gap between quaternion and real-valued models by presenting different quaternion architectures. First, basic paradigms such as autoencoders and deep fully-connected neural networks are introduced. Then, more elaborated convolutional and recurrent neural networks are extended to the quaternion domain. Experiments to compare QNNs over equivalents NNs have been conducted on real-world tasks across various domains, including computer vision, spoken language understanding and speech recognition. QNNs increase performances while reducing the needed number of neural parameters compared to real-valued neural networks.Then, QNNs are extended to unconventional settings. In a conventional QNN scenario, input features are manually segmented into three or four components, enabling further quaternion processing. Unfortunately, there is no evidence that such manual segmentation is the representation that suits the most to solve the considered task. Morevover, a manual segmentation drastically reduces the field of application of QNNs to four dimensional use-cases. Therefore the third part introduces a supervised and an unsupervised model to extract meaningful and disantengled quaternion input features, from any real-valued input signal, enabling the use of QNNs regardless of the dimensionality of the considered task. Conducted experiments on speech recognition and document classification show that the proposed approaches outperform traditional quaternion features
Bouzzit, Aziz. „Ellipsométrie acoustique pour le suivi et la caractérisation de matériaux complexes“. Electronic Thesis or Diss., CY Cergy Paris Université, 2024. http://www.theses.fr/2024CYUN1304.
Der volle Inhalt der QuelleComplex materials are at the heart of major societal challenges in most major fields such as energy, transport, environment, heritage conservation/restoration, health and safety. Because of the opportunities for innovation offered in terms of features, these materials are giving rise to new problems of multi-physical and multi-scale analysis and understanding. The same applies to the instrumentation needed to characterize them.Acoustic methods, which are widely used in the non-destructive characterization of complex media, make use of the propagation properties of mechanical waves in these materials, which can be heterogeneous and anisotropic.In a multi-scale approach, the advantage of ultrasonic methods is that they are particularly sensitive to mechanical properties such as elasticity, rigidity and viscosity. The heterogeneous and multiphase nature of a complex medium thus leads to the notion of a viscoelastic medium, characterized by generalized complex Lamé coefficients (��∗, ��∗) and their variation as a function of frequency.The objective of this thesis is to develop a method for characterizing these complex viscoelastic materials that simultaneously measures the variation of the two generalized complex Lamé coefficients (��∗, ��∗) versus the frequency. The proposed approach is to follow, in space and in time, the propagation of the Rayleigh wave and to extract its ellipsometric parameters (ellipticity χ and orientation θ) in addition to the propagation parameters (k' and k'') conventionally determined. Based on the wave detection by 3D laser vibrometry at the surface of the complex material, and by means of 2D Gabor analysis in Quaternion space, the estimation of propagation and ellipsometric parameters gives access to the complete characterization of the complex material only by studying the interaction of a Rayleigh wave with the medium.The theoretical developments proposed in this work, together with experimental and simulation results, confirm the value of acoustic ellipsometry for characterizing these complex materials
Silva, Rênad Ferreira da. „Transformações Geométricas no Plano e no Espaço“. Universidade Federal da Paraíba, 2013. http://tede.biblioteca.ufpb.br:8080/handle/tede/7476.
Der volle Inhalt der QuelleApproved for entry into archive by Maria Suzana Diniz (msuzanad@hotmail.com) on 2015-05-19T14:27:36Z (GMT) No. of bitstreams: 2 arquivototal.pdf: 9893623 bytes, checksum: 211bb6b2f2a20721abf5b2948352c518 (MD5) license_rdf: 22190 bytes, checksum: 19e8a2b57ef43c09f4d7071d2153c97d (MD5)
Made available in DSpace on 2015-05-19T14:27:36Z (GMT). No. of bitstreams: 2 arquivototal.pdf: 9893623 bytes, checksum: 211bb6b2f2a20721abf5b2948352c518 (MD5) license_rdf: 22190 bytes, checksum: 19e8a2b57ef43c09f4d7071d2153c97d (MD5) Previous issue date: 2013-08-14
Abstract: In this work we study some geometric transformations in the plane and the space. Initially, we present some special types of transformations in the plane and find the matrix of each of these transformations. In the second part we discourse the transformations in the space, emphasizing the rotations. We will use the angles of Euler to determine a rotation in the space around the Cartesian axes and define an equation which allows to rotate a vector around any axis. We also discuss the homogeneous spaces aiming the matrix representation of transformations of translation. Finally, we use the structure of the quaternions group to present a second form to rotation vectors and composition of rotations in the space. We emphasize that this study is essential to describe the motion of objects in the plane and in the space.
Neste trabalho estudamos algumas das transformações geométricas no Plano e no Espaço. Inicialmente, apresentamos alguns tipos de transformações especiais no Plano e encontramos a matriz de cada uma destas transformações. Na segunda parte abordamos as transformações no Espaço, dando ênfase as rotações. Utilizamos os ângulos de Euler para determinar uma rotação no espaço em torno dos eixos cartesianos e definimos uma equação que permite rotacionar um vetores em torno de um eixo qualquer. Também abordamos os espaços homogêneos objetivando a representa ção matricial da transformação de translação. Por último, usamos a estrutura do grupo dos Quatérnios para apresentar uma segunda forma de fazer rotações de vetores e composição de rotações no espaço. Ressaltamos que este estudo é fundamental para descrever o movimento de objetos no plano e no espaço.
Mostovoy, J. „Symmetric products and quaternion cycle spaces“. Thesis, University of Edinburgh, 1997. http://hdl.handle.net/1842/11203.
Der volle Inhalt der QuelleVoelkel, Konrad [Verfasser], und Matthias [Akademischer Betreuer] Wendt. „Motivic cell structures for projective spaces over split quaternions“. Freiburg : Universität, 2016. http://d-nb.info/1122831854/34.
Der volle Inhalt der QuelleBoote, Yumi. „On the symmetric square of quaternionic projective space“. Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/on-the-symmetric-square-of-quaternionic-projective-space(9ac64fc3-60b7-449e-8f5a-264a62b1429b).html.
Der volle Inhalt der QuelleScott, Richard A. (Richard Allan). „Real, complex and quaternionic toric spaces“. Thesis, Massachusetts Institute of Technology, 1993. http://hdl.handle.net/1721.1/46317.
Der volle Inhalt der QuelleGranja, Gustavo 1971. „Self maps of quaternionic projective spaces“. Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/42690.
Der volle Inhalt der QuelleBücher zum Thema "Quaternions space"
Edmonds, James D. Relativistic reality: A modern view. Singapore: World Scientific, 1997.
Den vollen Inhalt der Quelle findenKrieg, Aloys. Modular Forms on Half-Spaces of Quaternions. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/bfb0075946.
Der volle Inhalt der QuelleAlpay, Daniel, Fabrizio Colombo und Irene Sabadini. Quaternionic de Branges Spaces and Characteristic Operator Function. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-38312-1.
Der volle Inhalt der QuelleEdmonds, J. D. Relativistic Reality: A Modern View. World Scientific Publishing Co Pte Ltd, 1997.
Den vollen Inhalt der Quelle findenEdmonds, J. D. Relativistic Reality: A Modern View. World Scientific Publishing Co Pte Ltd, 1997.
Den vollen Inhalt der Quelle findenRelativistic Reality: A Modern View (Knots and Everything, Vol 12). World Scientific Publishing Company, 1998.
Den vollen Inhalt der Quelle findenLambek, Joachim. Six-Dimensional Lorentz Category. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198748991.003.0014.
Der volle Inhalt der QuelleSpacecraft Modeling, Attitude Determination, and Control: Quaternion-Based Approach. Taylor & Francis Group, 2019.
Den vollen Inhalt der Quelle findenYang, Yaguang. Spacecraft Modeling, Attitude Determination, and Control: Quaternion-Based Approach. Taylor & Francis Group, 2019.
Den vollen Inhalt der Quelle findenYang, Yaguang. Spacecraft Modeling, Attitude Determination, and Control: Quaternion-Based Approach. Taylor & Francis Group, 2019.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Quaternions space"
Vince, John. „Quaternions in Space“. In Quaternions for Computer Graphics, 89–129. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-760-0_7.
Der volle Inhalt der QuelleVince, John. „Quaternions in Space“. In Quaternions for Computer Graphics, 129–75. London: Springer London, 2021. http://dx.doi.org/10.1007/978-1-4471-7509-4_8.
Der volle Inhalt der QuelleVince, John. „Quaternions in Space“. In Mathematics for Computer Graphics, 261–83. London: Springer London, 2022. http://dx.doi.org/10.1007/978-1-4471-7520-9_12.
Der volle Inhalt der QuelleVince, John. „Quaternions in Space“. In Mathematics for Computer Graphics, 261–83. London: Springer London, 2022. http://dx.doi.org/10.1007/978-1-4471-7520-9_12.
Der volle Inhalt der QuelleVince, John. „Quaternion Transforms in Space“. In Rotation Transforms for Computer Graphics, 155–80. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-154-7_11.
Der volle Inhalt der QuelleXiao, Tingting, und Wanshe Li. „A Novel Robust Adaptive Color Image Watermarking Scheme Based on Artificial Bee Colony“. In Proceeding of 2021 International Conference on Wireless Communications, Networking and Applications, 1006–17. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2456-9_101.
Der volle Inhalt der QuelleCecil, Thomas E., und Patrick J. Ryan. „Hypersurfaces in Quaternionic Space Forms“. In Springer Monographs in Mathematics, 533–51. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-3246-7_9.
Der volle Inhalt der QuelleHitchin, Nigel. „Quaternionic Kähler Moduli Spaces“. In Riemannian Topology and Geometric Structures on Manifolds, 49–61. Boston, MA: Birkhäuser Boston, 2009. http://dx.doi.org/10.1007/978-0-8176-4743-8_3.
Der volle Inhalt der QuelleColombo, Fabrizio, Jonathan Gantner und David P. Kimsey. „Quaternionic Operators on a Hilbert Space“. In Spectral Theory on the S-Spectrum for Quaternionic Operators, 187–217. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-03074-2_9.
Der volle Inhalt der QuelleYau, Donald. „Maps to Spaces in the Genus of Infinite Quaternionic Projective Space“. In Categorical Decomposition Techniques in Algebraic Topology, 293–302. Basel: Birkhäuser Basel, 2003. http://dx.doi.org/10.1007/978-3-0348-7863-0_16.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Quaternions space"
Zhou, Yizhi, Yufan Liu und Xuan Wang. „Distributed Estimation for a 3-D Moving Target in Quaternion Space with Unknown Correlation“. In 2024 IEEE Conference on Control Technology and Applications (CCTA), 394–99. IEEE, 2024. http://dx.doi.org/10.1109/ccta60707.2024.10666607.
Der volle Inhalt der QuelleLEMAÎTRE, GEORGES, und RICHARD L. AMOROSO. „Quaternions and Elliptical Space: (Quaternions et Espace Elliptique)“. In Unified Field Mechanics II: Preliminary Formulations and Empirical Tests, 10th International Symposium Honouring Mathematical Physicist Jean-Pierre Vigier. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813232044_0008.
Der volle Inhalt der QuellePurwar, Anurag, und Q. J. Ge. „Polar Decomposition of Unit Dual Quaternions“. In ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/detc2012-70882.
Der volle Inhalt der QuelleEtzel, Karl R., und J. Michael McCarthy. „Spatial Motion Interpolation in an Image Space of SO(4)“. In ASME 1996 Design Engineering Technical Conferences and Computers in Engineering Conference. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/96-detc/mech-1164.
Der volle Inhalt der QuelleGe, Qiaode Jeffrey, Zihan Yu, Mona Arbab und Mark Langer. „On the Computation of the Average of Spatial Displacements“. In ASME 2022 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/detc2022-90156.
Der volle Inhalt der QuelleGe, Q. J., Jun Wu, Anurag Purwar und Feng Gao. „Kinematic Convexity of Planar Displacements Based on an Approximately Bi-Invariant Metric“. In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-87812.
Der volle Inhalt der QuelleValverde, Alfredo, und Panagiotis Tsiotras. „Relative Pose Stabilization using Backstepping Control with Dual Quaternions“. In 2018 Space Flight Mechanics Meeting. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2018. http://dx.doi.org/10.2514/6.2018-1980.
Der volle Inhalt der QuelleSchutte, Aaron D., und Firdaus E. Udwadia. „Explicit Nonlinear Rotational Controllers Using the Fundamental Equation“. In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-86795.
Der volle Inhalt der QuellePurwar, Anurag, Zhe Jin und Q. J. Ge. „Rational Motion Interpolation Under Kinematic Constraints of Spherical 6R Closed Chains“. In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-35727.
Der volle Inhalt der QuelleZu, Yue, Unsik Lee und Ran Dai. „Distributed Motion Estimation of Space Objects Using Dual Quaternions“. In AIAA/AAS Astrodynamics Specialist Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2014. http://dx.doi.org/10.2514/6.2014-4296.
Der volle Inhalt der Quelle