Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Quasiparticle Random Phase Approximation (QRPA)“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Quasiparticle Random Phase Approximation (QRPA)" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Quasiparticle Random Phase Approximation (QRPA)"
Raduta, A. A., und C. M. Raduta. „A new renormalization procedure of the quasiparticle random phase approximation“. International Journal of Modern Physics E 25, Nr. 03 (März 2016): 1650017. http://dx.doi.org/10.1142/s0218301316500178.
Der volle Inhalt der QuelleMARIANO, A. „THE NUMBER SELF-CONSISTENT RENORMALIZED RANDOM PHASE APPROXIMATION“. International Journal of Modern Physics B 20, Nr. 30n31 (20.12.2006): 5334–37. http://dx.doi.org/10.1142/s0217979206036442.
Der volle Inhalt der QuelleGonzález-Miret Zaragoza, Luis, Jean-Paul Ebran, Stéphane Hilaire, Sophie Péru, Mikael Frosini und Thomas Duguet. „Towards systematic large scale Quasiparticle Random-Phase Approximation calculations with covariant and chiral interactions“. EPJ Web of Conferences 294 (2024): 03003. http://dx.doi.org/10.1051/epjconf/202429403003.
Der volle Inhalt der QuelleCivitarese, O. „Fundamental nuclear structure symmetries in double beta decay processes“. HNPS Proceedings 9 (11.02.2020): 211. http://dx.doi.org/10.12681/hnps.2792.
Der volle Inhalt der QuelleYOSHIDA, KENICHI. „LOW-LYING EXCITATION MODES IN DEFORMED NEUTRON-RICH NUCLEI“. International Journal of Modern Physics E 17, supp01 (Dezember 2008): 272–85. http://dx.doi.org/10.1142/s0218301308011914.
Der volle Inhalt der QuelleNesterenko, V. O. „Dual nature of low-energy isoscalar monopole and dipole states in light nuclei“. Journal of Physics: Conference Series 2586, Nr. 1 (01.09.2023): 012074. http://dx.doi.org/10.1088/1742-6596/2586/1/012074.
Der volle Inhalt der QuelleQuliyev, H., N. Demirci Saygı, E. Guliyev und A. A. Kuliev. „The electric dipole response of even-even 154–164Dy isotopes“. Physica Scripta 97, Nr. 2 (17.01.2022): 025302. http://dx.doi.org/10.1088/1402-4896/ac4863.
Der volle Inhalt der QuelleYUKSEL, ESRA, und KUTSAL BOZKURT. „TENSOR EFFECTS IN PYGMY DIPOLE EXCITATION“. International Journal of Modern Physics E 20, Nr. 10 (Oktober 2011): 2143–51. http://dx.doi.org/10.1142/s0218301311020216.
Der volle Inhalt der QuellePirinen, P., J. Suhonen und E. Ydrefors. „Neutral-Current Neutrino-Nucleus Scattering off Xe Isotopes“. Advances in High Energy Physics 2018 (04.10.2018): 1–11. http://dx.doi.org/10.1155/2018/9163586.
Der volle Inhalt der QuelleRen, Zhongzhu, A. Faessler und T. S. Kosmas. „Study of the exotic μ-e conversion in nuclei using RQRPA“. HNPS Proceedings 9 (11.02.2020): 1. http://dx.doi.org/10.12681/hnps.2772.
Der volle Inhalt der QuelleDissertationen zum Thema "Quasiparticle Random Phase Approximation (QRPA)"
Lechaftois, François. „Description des états excités du noyau par la méthode de la Quasiparticle Random-Phase Approximation et l'interaction de Gogny“. Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS430/document.
Der volle Inhalt der QuelleThis thesis presents three aspects centered around the QRPA (Quasiparticle Random Phase Approximation).The first consists in the use of an axial code to confront computed data with experimental results andto feed a microscopic reaction code. This step is a chance to analyse low-energy spectroscopy (fewtens of MeV) of some nuclei, and more precisely (but not exclusively) the tin isotopic chain (Z=50).The second one relies on the improvement of the formalism to calculate multipolar electromagnetictransition operators, and a method to consolidate the computation of these operators, allowing toease the programming by unifying the code for different multipolarities. Finally, in order to overcomethe axial symmetry constraint, a new triaxial code has been developed. Its assets and developmentare presented, followed by the first batch of results
González-Miret, Zaragoza Luis. „Exploring dipole electric strength functions through QRPA : Systematic calculations and other developments“. Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP146.
Der volle Inhalt der QuelleThe quest for a comprehensive microscopic description of the atomic nucleus remains an open problem after almost a century of research. The diverse phenomena present within the nucleus, primarily arising from its many-body quantum nature, have led to the proliferation models, each specializing in describing a given set of nuclear features. To fully understand collective behaviour from a microscopic perspective, it is essential to move beyond a static mean-field approach. However, due mainly to the high computational cost required to do so, relatively few of such methods exist that provide systematic studies across the entire nuclear chart. One notable exception is the Quasiparticle Random Phase Approximation (QRPA) method, which allows for the description of both single-particle and collective nuclear excitations in the same footing while incorporating pairing effects. Previous studies have been carried out with the Gogny D1M force to produce gamma-strength functions for all nuclei. Nevertheless, for a more complete understanding, the use of other effective interactions and approaches within QRPA is paramount. In this thesis, new systematic QRPA studies are presented, alongside some new numerical and formal developments around QRPA.First, two systematic studies of gamma E1 transitions are discussed. Here, the QRPA problem is addressed using the Finite Amplitude Method (FAM), which enables the rapid evaluation of smoothed strength functions. The first study employs the covariant effective Lagrangian DD-PC1 to conduct extensive calculations across the nuclear chart. Additionally, another study investigates the same transitions in light and mid-mass nuclei using chiral interactions, which provide a realistic characterization of the internucleon force grounded in Quantum Chromodynamics through effective field theory. Notably, we present the first-ever chiral-QRPA results using a triaxially deformed mean-field, exploring the impact of this deformation on the QRPA response in ²⁴Mg and ³²S. Beyond the systematic QRPA studies, two further developments are presented. Firstly, we tacklethe problem of obtaining exact QRPA excited states using the FAM approach. In its original formulation, FAM was used to calculate strength functions, while obtainig the QRPA eigenstates was only possible via a post-procesing procedure. In this thesis, we introduce a new method based on the Jacobi-Davidson algorithm, which enables the efficient calculation of several targeted QRPA eigenstates with significantly reduced computational time compared to the matrix QRPA approach. Lastly, we propose a new straightforward formula to correct for the violation of the Pauli principle in QRPA, which is applied to compute correlation energies
Peña, Arteaga Daniel [Verfasser]. „Relativistic quasiparticle random phase approximation in deformed nuclei / Daniel Pena Arteaga“. 2007. http://d-nb.info/987929372/34.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Quasiparticle Random Phase Approximation (QRPA)"
Smetana, Adam, Fedor Šimkovic, Dušan Štefánik und Mikhail Krivoruchenko. „Nonlinear higher quasiparticle random phase approximation“. In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF GLOBAL NETWORK FOR INNOVATIVE TECHNOLOGY AND AWAM INTERNATIONAL CONFERENCE IN CIVIL ENGINEERING (IGNITE-AICCE’17): Sustainable Technology And Practice For Infrastructure and Community Resilience. Author(s), 2017. http://dx.doi.org/10.1063/1.5007646.
Der volle Inhalt der QuelleEngel, Jonathan, und M. T. Mustonen. „Calculating beta decay in the deformed self-consistent quasiparticle random phase approximation“. In CETUP* 2015 – WORKSHOP ON DARK MATTER, NEUTRINO PHYSICS AND ASTROPHYSICS AND PPC 2015 – IXTH INTERNATIONAL CONFERENCE ON INTERCONNECTIONS BETWEEN PARTICLE PHYSICS AND COSMOLOGY. Author(s), 2016. http://dx.doi.org/10.1063/1.4953297.
Der volle Inhalt der QuellePaar, N., D. Vretenar, T. Marketin, P. Ring, P. Demetriou, R. Julin und S. V. Harissopulos. „Neutrino-nucleus reaction rates based on the relativistic quasiparticle random phase approximation“. In FRONTIERS IN NUCLEAR STRUCTURE, ASTROPHYSICS, AND REACTIONS: FINUSTAR 2. AIP, 2008. http://dx.doi.org/10.1063/1.2939358.
Der volle Inhalt der QuelleHa, Eunja, und Myung-Ki Cheoun. „Nuclear β-Decay Half-Lives in the R-Process Nuclei by Deformed Quasiparticle Random-Phase Approximation“. In Proceedings of the 12th Asia Pacific Physics Conference (APPC12). Journal of the Physical Society of Japan, 2014. http://dx.doi.org/10.7566/jpscp.1.013025.
Der volle Inhalt der Quelle