Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Quantum theory“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Quantum theory" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Quantum theory"
Lee, Hyun Seok. „Cultural Studies and Quantum Mechanics“. Criticism and Theory Society of Korea 28, Nr. 2 (30.06.2023): 253–95. http://dx.doi.org/10.19116/theory.2023.28.2.253.
Der volle Inhalt der QuelleYF, Chang. „Restructure of Quantum Mechanics by Duality, the Extensive Quantum Theory and Applications“. Physical Science & Biophysics Journal 8, Nr. 1 (02.02.2024): 1–9. http://dx.doi.org/10.23880/psbj-16000265.
Der volle Inhalt der QuelleBethe, Hans A. „Quantum theory“. Reviews of Modern Physics 71, Nr. 2 (01.03.1999): S1—S5. http://dx.doi.org/10.1103/revmodphys.71.s1.
Der volle Inhalt der QuelleWilson, Robin. „Quantum theory“. Mathematical Intelligencer 41, Nr. 4 (15.07.2019): 76. http://dx.doi.org/10.1007/s00283-019-09916-5.
Der volle Inhalt der QuelleYukalov, V. I., und D. Sornette. „Quantum decision theory as quantum theory of measurement“. Physics Letters A 372, Nr. 46 (November 2008): 6867–71. http://dx.doi.org/10.1016/j.physleta.2008.09.053.
Der volle Inhalt der QuelleYukalov, V. I., und D. Sornette. „Quantum theory of measurements as quantum decision theory“. Journal of Physics: Conference Series 594 (18.03.2015): 012048. http://dx.doi.org/10.1088/1742-6596/594/1/012048.
Der volle Inhalt der QuelleLan, B. L., und S.-N. Liang. „Is Bohm's quantum theory equivalent to standard quantum theory?“ Journal of Physics: Conference Series 128 (01.08.2008): 012017. http://dx.doi.org/10.1088/1742-6596/128/1/012017.
Der volle Inhalt der QuelleHofmann, Ralf. „Quantum Field Theory“. Universe 10, Nr. 1 (28.12.2023): 14. http://dx.doi.org/10.3390/universe10010014.
Der volle Inhalt der QuelleGreen, H. S. „Quantum Theory of Gravitation“. Australian Journal of Physics 51, Nr. 3 (1998): 459. http://dx.doi.org/10.1071/p97084.
Der volle Inhalt der QuelleHudson, R. L., und L. S. Brown. „Quantum Field Theory“. Mathematical Gazette 79, Nr. 484 (März 1995): 249. http://dx.doi.org/10.2307/3620134.
Der volle Inhalt der QuelleDissertationen zum Thema "Quantum theory"
Oeckl, Robert. „Quantum geometry and Quantum Field Theory“. Thesis, University of Cambridge, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621912.
Der volle Inhalt der QuelleMidgley, Stuart. „Quantum waveguide theory“. University of Western Australia. School of Physics, 2003. http://theses.library.uwa.edu.au/adt-WU2004.0036.
Der volle Inhalt der QuelleSchumann, Robert Helmut. „Quantum information theory“. Thesis, Stellenbosch : Stellenbosch University, 2000. http://hdl.handle.net/10019.1/51892.
Der volle Inhalt der QuelleENGLISH ABSTRACT: What are the information processing capabilities of physical systems? As recently as the first half of the 20th century this question did not even have a definite meaning. What is information, and how would one process it? It took the development of theories of computing (in the 1930s) and information (late in the 1940s) for us to formulate mathematically what it means to compute or communicate. Yet these theories were abstract, based on axiomatic mathematics: what did physical systems have to do with these axioms? Rolf Landauer had the essential insight - "Information is physical" - that information is always encoded in the state of a physical system, whose dynamics on a microscopic level are well-described by quantum physics. This means that we cannot discuss information without discussing how it is represented, and how nature dictates it should behave. Wigner considered the situation from another perspective when he wrote about "the unreasonable effectiveness of mathematics in the natural sciences". Why are the computational techniques of mathematics so astonishingly useful in describing the physical world [1]? One might begin to suspect foul play in the universe's operating principles. Interesting insights into the physics of information accumulated through the 1970s and 1980s - most sensationally in the proposal for a "quantum computer". If we were to mark a particular year in which an explosion of interest took place in information physics, that year would have to be 1994, when Shor showed that a problem of practical interest (factorisation of integers) could be solved easily on a quantum computer. But the applications of information in physics - and vice versa - have been far more widespread than this popular discovery. These applications range from improved experimental technology, more sophisticated measurement techniques, methods for characterising the quantum/classical boundary, tools for quantum chaos, and deeper insight into quantum theory and nature. In this thesis I present a short review of ideas in quantum information theory. The first chapter contains introductory material, sketching the central ideas of probability and information theory. Quantum mechanics is presented at the level of advanced undergraduate knowledge, together with some useful tools for quantum mechanics of open systems. In the second chapter I outline how classical information is represented in quantum systems and what this means for agents trying to extract information from these systems. The final chapter presents a new resource: quantum information. This resource has some bewildering applications which have been discovered in the last ten years, and continually presents us with unexpected insights into quantum theory and the universe.
AFRIKAANSE OPSOMMING: Tot watter mate kan fisiese sisteme informasie verwerk? So onlangs soos die begin van die 20ste eeu was dié vraag nog betekenisloos. Wat is informasie, en wat bedoel ons as ons dit wil verwerk? Dit was eers met die ontwikkeling van die teorieë van berekening (in die 1930's) en informasie (in die laat 1940's) dat die tegnologie beskikbaar geword het wat ons toelaat om wiskundig te formuleer wat dit beteken om te bereken of te kommunikeer. Hierdie teorieë was egter abstrak en op aksiomatiese wiskunde gegrond - mens sou wel kon wonder wat fisiese sisteme met hierdie aksiomas te make het. Dit was Rolf Landauer wat uiteindelik die nodige insig verskaf het - "Informasie is fisies" - informasie word juis altyd in 'n fisiese toestand gekodeer, en so 'n fisiese toestand word op die mikroskopiese vlak akkuraat deur kwantumfisika beskryf. Dit beteken dat ons nie informasie kan bespreek sonder om ook na die fisiese voorstelling te verwys nie, of sonder om in ag te neem nie dat die natuur die gedrag van informasie voorskryf. Hierdie situasie is vanaf 'n ander perspektief ook deur Wigner beskou toe hy geskryf het oor "die onredelike doeltreffendheid van wiskunde in die natuurwetenskappe". Waarom slaag wiskundige strukture en tegnieke van wiskunde so uitstekend daarin om die fisiese wêreld te beskryf [1]? Dit laat 'n mens wonder of die beginsels waarvolgens die heelal inmekaar steek spesiaal so saamgeflans is om ons 'n rat voor die oë te draai. Die fisika van informasie het in die 1970's en 1980's heelwat interessante insigte opgelewer, waarvan die mees opspraakwekkende sekerlik die gedagte van 'n kwantumrekenaar is. As ons één jaar wil uitsonder as die begin van informasiefisika, is dit die jaar 1994 toe Shor ontdek het dat 'n belangrike probleem van algemene belang (die faktorisering van groot heelgetalle) moontlik gemaak word deur 'n kwantumrekenaar. Die toepassings van informasie in fisika, en andersom, strek egter veel wyer as hierdie sleutel toepassing. Ander toepassings strek van verbeterde eksperimentele metodes, deur gesofistikeerde meetmetodes, metodes vir die ondersoek en beskrywing van kwantumchaos tot by dieper insig in die samehang van kwantumteorie en die natuur. In hierdie tesis bied ek 'n kort oorsig oor die belangrikste idees van kwantuminformasie teorie. Die eerste hoofstuk bestaan uit inleidende materiaal oor die belangrikste idees van waarskynlikheidsteorie en klassieke informasie teorie. Kwantummeganika word op 'n gevorderde voorgraadse vlak ingevoer, saam met die nodige gereedskap van kwantummeganika vir oop stelsels. In die tweede hoofstuk spreek ek die voorstelling van klassieke informasie en kwantumstelsels aan, en die gepaardgaande moontlikhede vir 'n agent wat informasie uit sulke stelsels wil kry. Die laaste hoofstuk ontgin 'n nuwe hulpbron: kwantuminformasie. Gedurende die afgelope tien jaar het hierdie nuwe hulpbron tot verbysterende nuwe toepassings gelei en ons keer op keer tot onverwagte nuwe insigte oor kwantumteorie en die heelal gelei.
Shin, Ghi Ryang. „Quantum transport theory“. Diss., The University of Arizona, 1993. http://hdl.handle.net/10150/186508.
Der volle Inhalt der QuelleGupta, Neha. „Homotopy quantum field theory and quantum groups“. Thesis, University of Warwick, 2011. http://wrap.warwick.ac.uk/38110/.
Der volle Inhalt der QuellePoletti, Stephen John. „Geometry, quantum field theory and quantum cosmology“. Thesis, University of Newcastle Upon Tyne, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.315921.
Der volle Inhalt der QuelleKerr, Steven. „Topological quantum field theory and quantum gravity“. Thesis, University of Nottingham, 2014. http://eprints.nottingham.ac.uk/14094/.
Der volle Inhalt der QuelleWhitt, Brian. „Gravity : a quantum theory?“ Thesis, University of Cambridge, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.304522.
Der volle Inhalt der QuelleHamilton, Craig S. „Measurements in quantum theory“. Thesis, University of Strathclyde, 2009. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=11885.
Der volle Inhalt der QuelleHele, Timothy John Harvey. „Quantum transition-state theory“. Thesis, University of Cambridge, 2014. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708197.
Der volle Inhalt der QuelleBücher zum Thema "Quantum theory"
Bongaarts, Peter. Quantum Theory. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-09561-5.
Der volle Inhalt der QuelleManning, Phillip. Quantum theory. New York: Chelsea House, 2011.
Den vollen Inhalt der Quelle findenAnastasovski, P. K. Quantum mass theory compatible with quantum field theory. Commack, N.Y: Nova Science Publishers, 1995.
Den vollen Inhalt der Quelle findenAnastasovski, P. K. Quantum mass theory compatible with quantum field theory. Commack, N.Y: Nova Science Publishers, 1995.
Den vollen Inhalt der Quelle findenFriederich, Simon. Interpreting Quantum Theory. London: Palgrave Macmillan UK, 2015. http://dx.doi.org/10.1057/9781137447159.
Der volle Inhalt der QuelleMandl, F. Quantum field theory. 2. Aufl. Hoboken, N.J: Wiley, 2010.
Den vollen Inhalt der Quelle findenRyder, Lewis H. Quantum field theory. Cambridge [Cambridgeshire]: Cambridge University Press, 1985.
Den vollen Inhalt der Quelle findenItzykson, Claude. Quantum field theory. Maidenhead: McGraw-Hill, 1985.
Den vollen Inhalt der Quelle findenScadron, Michael D. Advanced Quantum Theory. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-61252-7.
Der volle Inhalt der QuellePadmanabhan, Thanu. Quantum Field Theory. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28173-5.
Der volle Inhalt der QuelleBuchteile zum Thema "Quantum theory"
Gracia-Bondía, José M., Joseph C. Várilly und Héctor Figueroa. „Quantum Theory“. In Elements of Noncommutative Geometry, 557–96. Boston, MA: Birkhäuser Boston, 2001. http://dx.doi.org/10.1007/978-1-4612-0005-5_13.
Der volle Inhalt der QuelleCropper, William H. „Quantum Theory“. In Mathermatica® Computer Programs for Physical Chemistry, 69–90. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-2204-0_4.
Der volle Inhalt der QuelleStreltsov, Alexander. „Quantum Theory“. In SpringerBriefs in Physics, 5–10. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09656-8_2.
Der volle Inhalt der QuelleGlimm, James, und Arthur Jaffe. „Quantum Theory“. In Quantum Physics, 3–27. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4612-4728-9_1.
Der volle Inhalt der Quellevon Weizsäcker, Carl Friedrich. „Quantum Theory“. In SpringerBriefs on Pioneers in Science and Practice, 74–109. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03668-7_7.
Der volle Inhalt der QuelleSilverman, M. P., und R. L. Mallett. „Quantum Theory“. In AIP Physics Desk Reference, 693–724. New York, NY: Springer New York, 2003. http://dx.doi.org/10.1007/978-1-4757-3805-6_23.
Der volle Inhalt der QuelleOnishi, Taku. „Quantum Theory“. In Quantum Computational Chemistry, 3–11. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5933-9_1.
Der volle Inhalt der QuelleWeik, Martin H. „quantum theory“. In Computer Science and Communications Dictionary, 1388. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_15243.
Der volle Inhalt der QuelleRussell, Travis B. „Quantum Theory“. In Mathematics in Cyber Research, 421–52. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9780429354649-13.
Der volle Inhalt der QuelleGan, Woon Siong. „Quantum Theory“. In Quantum Acoustical Imaging, 1–8. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-0983-2_1.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Quantum theory"
Mardari, Ghenadie N., Guillaume Adenier, Andrei Yu Khrennikov, Pekka Lahti, Vladimir I. Man'ko und Theo M. Nieuwenhuizen. „Understanding Quanta Beyond Quantum Mechanics“. In Quantum Theory. AIP, 2007. http://dx.doi.org/10.1063/1.2827318.
Der volle Inhalt der QuelleGrib, A., Guillaume Adenier, Andrei Yu Khrennikov, Pekka Lahti, Vladimir I. Man'ko und Theo M. Nieuwenhuizen. „Quantum Logic and Macroscopic Quantum Games“. In Quantum Theory. AIP, 2007. http://dx.doi.org/10.1063/1.2827341.
Der volle Inhalt der QuelleJaeger, Gregg, Kevin Ann, Guillaume Adenier, Andrei Yu Khrennikov, Pekka Lahti, Vladimir I. Man'ko und Theo M. Nieuwenhuizen. „Decoherence, Disentanglement and Foundations of Quantum Mechanics“. In Quantum Theory. AIP, 2007. http://dx.doi.org/10.1063/1.2827292.
Der volle Inhalt der QuelleKhrennikov, Andrei, Guillaume Adenier, Andrei Yu Khrennikov, Pekka Lahti, Vladimir I. Man'ko und Theo M. Nieuwenhuizen. „Prequantum Classical Statistical Field Theory—PCSFT“. In Quantum Theory. AIP, 2007. http://dx.doi.org/10.1063/1.2827293.
Der volle Inhalt der QuelleKhrennikov, Andrei, Guillaume Adenier, Andrei Yu Khrennikov, Pekka Lahti, Vladimir I. Man'ko und Theo M. Nieuwenhuizen. „Bell's Inequality: Nonlocalty, “Death of Reality”, or Incompatibility of Random Variables?“ In Quantum Theory. AIP, 2007. http://dx.doi.org/10.1063/1.2827294.
Der volle Inhalt der QuelleMan'ko, Margarita A., Guillaume Adenier, Andrei Yu Khrennikov, Pekka Lahti, Vladimir I. Man'ko und Theo M. Nieuwenhuizen. „Tomographic Entropy and New Entropic Uncertainty Relations“. In Quantum Theory. AIP, 2007. http://dx.doi.org/10.1063/1.2827295.
Der volle Inhalt der QuelleMan'ko, Vladimir I., Guillaume Adenier, Andrei Yu Khrennikov, Pekka Lahti, Vladimir I. Man'ko und Theo M. Nieuwenhuizen. „Probability Instead of Wave Function and Bell Inequalities as Entanglement Criterion“. In Quantum Theory. AIP, 2007. http://dx.doi.org/10.1063/1.2827296.
Der volle Inhalt der QuelleNieuwenhuizen, Th M., Guillaume Adenier, Andrei Yu Khrennikov, Pekka Lahti, Vladimir I. Man'ko und Theo M. Nieuwenhuizen. „The Pullback Mechanism in Stochastic Electrodynamics“. In Quantum Theory. AIP, 2007. http://dx.doi.org/10.1063/1.2827297.
Der volle Inhalt der QuelleNieuwenhuizen, Th M., Guillaume Adenier, Andrei Yu Khrennikov, Pekka Lahti, Vladimir I. Man'ko und Theo M. Nieuwenhuizen. „The Relativistic Theory of Gravitation and its Application to Cosmology and Macroscopic Quantum Black Holes“. In Quantum Theory. AIP, 2007. http://dx.doi.org/10.1063/1.2827298.
Der volle Inhalt der QuelleAccardi, Luigi, Satoshi Uchiyama, Guillaume Adenier, Andrei Yu Khrennikov, Pekka Lahti, Vladimir I. Man'ko und Theo M. Nieuwenhuizen. „Universality of the EPR-chameleon model“. In Quantum Theory. AIP, 2007. http://dx.doi.org/10.1063/1.2827299.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Quantum theory"
Jafferis, Daniel. Topics in string theory, quantum field theory and quantum gravity. Office of Scientific and Technical Information (OSTI), März 2021. http://dx.doi.org/10.2172/1846570.
Der volle Inhalt der QuelleAdami, Christoph. Relativistic Quantum Information Theory. Fort Belvoir, VA: Defense Technical Information Center, November 2007. http://dx.doi.org/10.21236/ada490967.
Der volle Inhalt der QuelleJaffe, Arthur M. "Quantum Field Theory and QCD". Office of Scientific and Technical Information (OSTI), Februar 2006. http://dx.doi.org/10.2172/891184.
Der volle Inhalt der QuelleCaldi, D. G. Studies in quantum field theory. Office of Scientific and Technical Information (OSTI), März 1993. http://dx.doi.org/10.2172/10165764.
Der volle Inhalt der QuelleChudnovsky, Eugene M. Quantum Theory of Molecular Nanomagnets. Fort Belvoir, VA: Defense Technical Information Center, Februar 2001. http://dx.doi.org/10.21236/ada387444.
Der volle Inhalt der QuelleHirshfeld, Allen. Deformation Quantization in Quantum Mechanics and Quantum Field Theory. GIQ, 2012. http://dx.doi.org/10.7546/giq-4-2003-11-41.
Der volle Inhalt der QuelleLawrence, Albion, Matthew Headrick, Howard Schnitzer, Bogdan Stoica, Djordje Radicevic, Harsha Hampapura, Andrew Rolph, Jonathan Harper und Cesar Agon. Research in Quantum Field Theory, Cosmology, and String Theory. Office of Scientific and Technical Information (OSTI), März 2020. http://dx.doi.org/10.2172/1837060.
Der volle Inhalt der QuelleZurek, Wojciech H. Quantum Theory of the Classical: Einselection, Envariance, and Quantum Darwinism. Office of Scientific and Technical Information (OSTI), April 2013. http://dx.doi.org/10.2172/1073733.
Der volle Inhalt der QuelleLight, John C. Quantum Theory of Fast Chemical Reactions. Office of Scientific and Technical Information (OSTI), Juli 2007. http://dx.doi.org/10.2172/910303.
Der volle Inhalt der QuelleHeifets, Samuel A. Quantum Theory of Optical Stochastic Cooling. Office of Scientific and Technical Information (OSTI), Dezember 2000. http://dx.doi.org/10.2172/784782.
Der volle Inhalt der Quelle