Auswahl der wissenschaftlichen Literatur zum Thema „Quantum theory“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Quantum theory" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Quantum theory"

1

Lee, Hyun Seok. „Cultural Studies and Quantum Mechanics“. Criticism and Theory Society of Korea 28, Nr. 2 (30.06.2023): 253–95. http://dx.doi.org/10.19116/theory.2023.28.2.253.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

YF, Chang. „Restructure of Quantum Mechanics by Duality, the Extensive Quantum Theory and Applications“. Physical Science & Biophysics Journal 8, Nr. 1 (02.02.2024): 1–9. http://dx.doi.org/10.23880/psbj-16000265.

Der volle Inhalt der Quelle
Annotation:
Reconstructing quantum mechanics has been an exploratory direction for physicists. Based on logical structure and basic principles of quantum mechanics, we propose a new method on reconstruction quantum mechanics completely by the waveparticle duality. This is divided into two steps: First, from wave form and duality we obtain the extensive quantum theory, which has the same quantum formulations only with different quantum constants H; then microscopic phenomena determine H=h. Further, we derive the corresponding commutation relation, the uncertainty principle and Heisenberg equation, etc. Then we research potential and interactions in special relativity and general relativity. Finally, various applications and developments, and some basic questions are discussed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Bethe, Hans A. „Quantum theory“. Reviews of Modern Physics 71, Nr. 2 (01.03.1999): S1—S5. http://dx.doi.org/10.1103/revmodphys.71.s1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Wilson, Robin. „Quantum theory“. Mathematical Intelligencer 41, Nr. 4 (15.07.2019): 76. http://dx.doi.org/10.1007/s00283-019-09916-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Yukalov, V. I., und D. Sornette. „Quantum decision theory as quantum theory of measurement“. Physics Letters A 372, Nr. 46 (November 2008): 6867–71. http://dx.doi.org/10.1016/j.physleta.2008.09.053.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Yukalov, V. I., und D. Sornette. „Quantum theory of measurements as quantum decision theory“. Journal of Physics: Conference Series 594 (18.03.2015): 012048. http://dx.doi.org/10.1088/1742-6596/594/1/012048.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Lan, B. L., und S.-N. Liang. „Is Bohm's quantum theory equivalent to standard quantum theory?“ Journal of Physics: Conference Series 128 (01.08.2008): 012017. http://dx.doi.org/10.1088/1742-6596/128/1/012017.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Hofmann, Ralf. „Quantum Field Theory“. Universe 10, Nr. 1 (28.12.2023): 14. http://dx.doi.org/10.3390/universe10010014.

Der volle Inhalt der Quelle
Annotation:
This Special Issue on quantum field theory presents work covering a wide and topical range of subjects mainly within the area of interacting 4D quantum field theories subject to certain backgrounds [...]
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Green, H. S. „Quantum Theory of Gravitation“. Australian Journal of Physics 51, Nr. 3 (1998): 459. http://dx.doi.org/10.1071/p97084.

Der volle Inhalt der Quelle
Annotation:
It is possible to construct the non-euclidean geometry of space-time from the information carried by neutral particles. Points are identified with the quantal events in which photons or neutrinos are created and annihilated, and represented by the relativistic density matrices of particles immediately after creation or before annihilation. From these, matrices representing subspaces in any number of dimensions are constructed, and the metric and curvature tensors are derived by an elementary algebraic method; these are similar in all respects to those of Riemannian geometry. The algebraic method is extended to obtain solutions of Einstein’s gravitational field equations for empty space, with a cosmological term. General relativity and quantum theory are unified by the quantal embedding of non-euclidean space-time, and the derivation of a generalisation, consistent with Einstein"s equations, of the special relativistic wave equations of particles of any spin within representations of SO(3) ⊗ SO(4; 2). There are some novel results concerning the dependence of the scale of space-time on properties of the particles by means of which it is observed, and the gauge groups associated with gravitation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Hudson, R. L., und L. S. Brown. „Quantum Field Theory“. Mathematical Gazette 79, Nr. 484 (März 1995): 249. http://dx.doi.org/10.2307/3620134.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Quantum theory"

1

Oeckl, Robert. „Quantum geometry and Quantum Field Theory“. Thesis, University of Cambridge, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621912.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Midgley, Stuart. „Quantum waveguide theory“. University of Western Australia. School of Physics, 2003. http://theses.library.uwa.edu.au/adt-WU2004.0036.

Der volle Inhalt der Quelle
Annotation:
The study of nano-electronic devices is fundamental to the advancement of the semiconductor industry. As electronic devices become increasingly smaller, they will eventually move into a regime where the classical nature of the electrons no longer applies. As the quantum nature of the electrons becomes increasingly important, classical or semiclassical theories and methods will no longer serve their purpose. For example, the simplest non-classical effect that will occur is the tunnelling of electrons through the potential barriers that form wires and transistors. This results in an increase in noise and a reduction in the device?s ability to function correctly. Other quantum effects include coulomb blockade, resonant tunnelling, interference and diffraction, coulomb drag, resonant blockade and the list goes on. This thesis develops both a theoretical model and computational method to allow nanoelectronic devices to be studied in detail. Through the use of computer code and an appropriate model description, potential problems and new novel devices may be identified and studied. The model is as accurate to the physical realisation of the devices as possible to allow direct comparison with experimental outcomes. Using simple geometric shapes of varying potential heights, simple devices are readily accessible: quantum wires; quantum transistors; resonant cavities; and coupled quantum wires. Such devices will form the building blocks of future complex devices and thus need to be fully understood. Results obtained studying the connection of a quantum wire with its surroundings demonstrate non-intuitive behaviour and the importance of device geometry to electrical characteristics. The application of magnetic fields to various nano-devices produced a range of interesting phenomenon with promising novel applications. The magnetic field can be used to alter the phase of the electron, modifying the interaction between the electronic potential and the transport electrons. This thesis studies in detail the Aharonov-Bohm oscillation and impurity characterisation in quantum wires. By studying various devices considerable information can be added to the knowledge base of nano-electronic devices and provide a basis to further research. The computational algorithms developed in this thesis are highly accurate, numerically efficient and unconditionally stable, which can also be used to study many other physical phenomena in the quantum world. As an example, the computational algorithms were applied to positron-hydrogen scattering with the results indicating positronium formation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Schumann, Robert Helmut. „Quantum information theory“. Thesis, Stellenbosch : Stellenbosch University, 2000. http://hdl.handle.net/10019.1/51892.

Der volle Inhalt der Quelle
Annotation:
Thesis (MSc)--Stellenbosch University, 2000
ENGLISH ABSTRACT: What are the information processing capabilities of physical systems? As recently as the first half of the 20th century this question did not even have a definite meaning. What is information, and how would one process it? It took the development of theories of computing (in the 1930s) and information (late in the 1940s) for us to formulate mathematically what it means to compute or communicate. Yet these theories were abstract, based on axiomatic mathematics: what did physical systems have to do with these axioms? Rolf Landauer had the essential insight - "Information is physical" - that information is always encoded in the state of a physical system, whose dynamics on a microscopic level are well-described by quantum physics. This means that we cannot discuss information without discussing how it is represented, and how nature dictates it should behave. Wigner considered the situation from another perspective when he wrote about "the unreasonable effectiveness of mathematics in the natural sciences". Why are the computational techniques of mathematics so astonishingly useful in describing the physical world [1]? One might begin to suspect foul play in the universe's operating principles. Interesting insights into the physics of information accumulated through the 1970s and 1980s - most sensationally in the proposal for a "quantum computer". If we were to mark a particular year in which an explosion of interest took place in information physics, that year would have to be 1994, when Shor showed that a problem of practical interest (factorisation of integers) could be solved easily on a quantum computer. But the applications of information in physics - and vice versa - have been far more widespread than this popular discovery. These applications range from improved experimental technology, more sophisticated measurement techniques, methods for characterising the quantum/classical boundary, tools for quantum chaos, and deeper insight into quantum theory and nature. In this thesis I present a short review of ideas in quantum information theory. The first chapter contains introductory material, sketching the central ideas of probability and information theory. Quantum mechanics is presented at the level of advanced undergraduate knowledge, together with some useful tools for quantum mechanics of open systems. In the second chapter I outline how classical information is represented in quantum systems and what this means for agents trying to extract information from these systems. The final chapter presents a new resource: quantum information. This resource has some bewildering applications which have been discovered in the last ten years, and continually presents us with unexpected insights into quantum theory and the universe.
AFRIKAANSE OPSOMMING: Tot watter mate kan fisiese sisteme informasie verwerk? So onlangs soos die begin van die 20ste eeu was dié vraag nog betekenisloos. Wat is informasie, en wat bedoel ons as ons dit wil verwerk? Dit was eers met die ontwikkeling van die teorieë van berekening (in die 1930's) en informasie (in die laat 1940's) dat die tegnologie beskikbaar geword het wat ons toelaat om wiskundig te formuleer wat dit beteken om te bereken of te kommunikeer. Hierdie teorieë was egter abstrak en op aksiomatiese wiskunde gegrond - mens sou wel kon wonder wat fisiese sisteme met hierdie aksiomas te make het. Dit was Rolf Landauer wat uiteindelik die nodige insig verskaf het - "Informasie is fisies" - informasie word juis altyd in 'n fisiese toestand gekodeer, en so 'n fisiese toestand word op die mikroskopiese vlak akkuraat deur kwantumfisika beskryf. Dit beteken dat ons nie informasie kan bespreek sonder om ook na die fisiese voorstelling te verwys nie, of sonder om in ag te neem nie dat die natuur die gedrag van informasie voorskryf. Hierdie situasie is vanaf 'n ander perspektief ook deur Wigner beskou toe hy geskryf het oor "die onredelike doeltreffendheid van wiskunde in die natuurwetenskappe". Waarom slaag wiskundige strukture en tegnieke van wiskunde so uitstekend daarin om die fisiese wêreld te beskryf [1]? Dit laat 'n mens wonder of die beginsels waarvolgens die heelal inmekaar steek spesiaal so saamgeflans is om ons 'n rat voor die oë te draai. Die fisika van informasie het in die 1970's en 1980's heelwat interessante insigte opgelewer, waarvan die mees opspraakwekkende sekerlik die gedagte van 'n kwantumrekenaar is. As ons één jaar wil uitsonder as die begin van informasiefisika, is dit die jaar 1994 toe Shor ontdek het dat 'n belangrike probleem van algemene belang (die faktorisering van groot heelgetalle) moontlik gemaak word deur 'n kwantumrekenaar. Die toepassings van informasie in fisika, en andersom, strek egter veel wyer as hierdie sleutel toepassing. Ander toepassings strek van verbeterde eksperimentele metodes, deur gesofistikeerde meetmetodes, metodes vir die ondersoek en beskrywing van kwantumchaos tot by dieper insig in die samehang van kwantumteorie en die natuur. In hierdie tesis bied ek 'n kort oorsig oor die belangrikste idees van kwantuminformasie teorie. Die eerste hoofstuk bestaan uit inleidende materiaal oor die belangrikste idees van waarskynlikheidsteorie en klassieke informasie teorie. Kwantummeganika word op 'n gevorderde voorgraadse vlak ingevoer, saam met die nodige gereedskap van kwantummeganika vir oop stelsels. In die tweede hoofstuk spreek ek die voorstelling van klassieke informasie en kwantumstelsels aan, en die gepaardgaande moontlikhede vir 'n agent wat informasie uit sulke stelsels wil kry. Die laaste hoofstuk ontgin 'n nuwe hulpbron: kwantuminformasie. Gedurende die afgelope tien jaar het hierdie nuwe hulpbron tot verbysterende nuwe toepassings gelei en ons keer op keer tot onverwagte nuwe insigte oor kwantumteorie en die heelal gelei.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Shin, Ghi Ryang. „Quantum transport theory“. Diss., The University of Arizona, 1993. http://hdl.handle.net/10150/186508.

Der volle Inhalt der Quelle
Annotation:
Within the framework of the quantum transport theory based on the Wigner transform of the density matrix I study first in non-relativistic and subsequently in relativistic formulation a number of applications. I also develop further the recently proposed relativistic theory: the classical limit is carefully derived and the integral equations of the relativistic Wigner function derived explicitly. I show how it is possible to obtain the Schwinger like particle production rate from relativistic quantum transport equations. Noteworthy numerical results address the shape of the relativistic Wigner function of a given quantum state. Other numerical studies are primarily oriented towards the time evolution of the Wigner function--I can presently solve only the nonrelativistic case in which there is no mixing between particle production and flow phenomena: I consider numerically the fate of the muon after muon catalyzed fusion.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Gupta, Neha. „Homotopy quantum field theory and quantum groups“. Thesis, University of Warwick, 2011. http://wrap.warwick.ac.uk/38110/.

Der volle Inhalt der Quelle
Annotation:
The thesis is divided into two parts one for dimension 2 and the other for dimension 3. Part one (Chapter 3) of the thesis generalises the definition of an n-dimensional HQFT in terms of a monoidal functor from a rigid symmetric monoidal category X-Cobn to any monoidal category A. In particular, 2-dimensional HQFTs with target K(G,1) taking values in A are generated from any Turaev G-crossed system in A and vice versa. This is the generalisation of the theory given by Turaev into a purely categorical set-up. Part two (Chapter 4) of the thesis generalises the concept of a group-coalgebra, Hopf group-coalgebra, crossed Hopf group-coalgebra and quasitriangular Hopf group-coalgebra in the case of a group scheme. Quantum double of a crossed Hopf group-scheme coalgebra is constructed in the affine case and conjectured for the more general non-affine case. We can construct 3-dimensional HQFTs from modular crossed G-categories. The category of representations of a quantum double of a crossed Hopf group-coalgebra is a ribbon (quasitriangular) crossed group-category, and hence can generate 3-dimensional HQFTs under certain conditions if the category becomes modular. However, the problem of systematic finding of modular crossed G-categories is largely open.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Poletti, Stephen John. „Geometry, quantum field theory and quantum cosmology“. Thesis, University of Newcastle Upon Tyne, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.315921.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Kerr, Steven. „Topological quantum field theory and quantum gravity“. Thesis, University of Nottingham, 2014. http://eprints.nottingham.ac.uk/14094/.

Der volle Inhalt der Quelle
Annotation:
This thesis is broadly split into two parts. In the first part, simple state sum models for minimally coupled fermion and scalar fields are constructed on a 1-manifold. The models are independent of the triangulation and give the same result as the continuum partition functions evaluated using zeta-function regularisation. Some implications for more physical models are discussed. In the second part, the gauge gravity action is written using a particularly simple matrix technique. The coupling to scalar, fermion and Yang-Mills fields is reviewed, with some small additions. A sum over histories quantisation of the gauge gravity theory in 2+1 dimensions is then carried out for a particular class of triangulations of the three-sphere. The preliminary stage of the Hamiltonian analysis for the (3+1)-dimensional gauge gravity theory is undertaken.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Whitt, Brian. „Gravity : a quantum theory?“ Thesis, University of Cambridge, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.304522.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Hamilton, Craig S. „Measurements in quantum theory“. Thesis, University of Strathclyde, 2009. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=11885.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Hele, Timothy John Harvey. „Quantum transition-state theory“. Thesis, University of Cambridge, 2014. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708197.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Quantum theory"

1

Bongaarts, Peter. Quantum Theory. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-09561-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Manning, Phillip. Quantum theory. New York: Chelsea House, 2011.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Anastasovski, P. K. Quantum mass theory compatible with quantum field theory. Commack, N.Y: Nova Science Publishers, 1995.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Anastasovski, P. K. Quantum mass theory compatible with quantum field theory. Commack, N.Y: Nova Science Publishers, 1995.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Friederich, Simon. Interpreting Quantum Theory. London: Palgrave Macmillan UK, 2015. http://dx.doi.org/10.1057/9781137447159.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Mandl, F. Quantum field theory. 2. Aufl. Hoboken, N.J: Wiley, 2010.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Ryder, Lewis H. Quantum field theory. Cambridge [Cambridgeshire]: Cambridge University Press, 1985.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Itzykson, Claude. Quantum field theory. Maidenhead: McGraw-Hill, 1985.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Scadron, Michael D. Advanced Quantum Theory. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-61252-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Padmanabhan, Thanu. Quantum Field Theory. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28173-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Quantum theory"

1

Gracia-Bondía, José M., Joseph C. Várilly und Héctor Figueroa. „Quantum Theory“. In Elements of Noncommutative Geometry, 557–96. Boston, MA: Birkhäuser Boston, 2001. http://dx.doi.org/10.1007/978-1-4612-0005-5_13.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Cropper, William H. „Quantum Theory“. In Mathermatica® Computer Programs for Physical Chemistry, 69–90. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-2204-0_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Streltsov, Alexander. „Quantum Theory“. In SpringerBriefs in Physics, 5–10. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09656-8_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Glimm, James, und Arthur Jaffe. „Quantum Theory“. In Quantum Physics, 3–27. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4612-4728-9_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

von Weizsäcker, Carl Friedrich. „Quantum Theory“. In SpringerBriefs on Pioneers in Science and Practice, 74–109. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03668-7_7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Silverman, M. P., und R. L. Mallett. „Quantum Theory“. In AIP Physics Desk Reference, 693–724. New York, NY: Springer New York, 2003. http://dx.doi.org/10.1007/978-1-4757-3805-6_23.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Onishi, Taku. „Quantum Theory“. In Quantum Computational Chemistry, 3–11. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5933-9_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Weik, Martin H. „quantum theory“. In Computer Science and Communications Dictionary, 1388. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_15243.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Russell, Travis B. „Quantum Theory“. In Mathematics in Cyber Research, 421–52. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9780429354649-13.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Gan, Woon Siong. „Quantum Theory“. In Quantum Acoustical Imaging, 1–8. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-0983-2_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Quantum theory"

1

Mardari, Ghenadie N., Guillaume Adenier, Andrei Yu Khrennikov, Pekka Lahti, Vladimir I. Man'ko und Theo M. Nieuwenhuizen. „Understanding Quanta Beyond Quantum Mechanics“. In Quantum Theory. AIP, 2007. http://dx.doi.org/10.1063/1.2827318.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Grib, A., Guillaume Adenier, Andrei Yu Khrennikov, Pekka Lahti, Vladimir I. Man'ko und Theo M. Nieuwenhuizen. „Quantum Logic and Macroscopic Quantum Games“. In Quantum Theory. AIP, 2007. http://dx.doi.org/10.1063/1.2827341.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Jaeger, Gregg, Kevin Ann, Guillaume Adenier, Andrei Yu Khrennikov, Pekka Lahti, Vladimir I. Man'ko und Theo M. Nieuwenhuizen. „Decoherence, Disentanglement and Foundations of Quantum Mechanics“. In Quantum Theory. AIP, 2007. http://dx.doi.org/10.1063/1.2827292.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Khrennikov, Andrei, Guillaume Adenier, Andrei Yu Khrennikov, Pekka Lahti, Vladimir I. Man'ko und Theo M. Nieuwenhuizen. „Prequantum Classical Statistical Field Theory—PCSFT“. In Quantum Theory. AIP, 2007. http://dx.doi.org/10.1063/1.2827293.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Khrennikov, Andrei, Guillaume Adenier, Andrei Yu Khrennikov, Pekka Lahti, Vladimir I. Man'ko und Theo M. Nieuwenhuizen. „Bell's Inequality: Nonlocalty, “Death of Reality”, or Incompatibility of Random Variables?“ In Quantum Theory. AIP, 2007. http://dx.doi.org/10.1063/1.2827294.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Man'ko, Margarita A., Guillaume Adenier, Andrei Yu Khrennikov, Pekka Lahti, Vladimir I. Man'ko und Theo M. Nieuwenhuizen. „Tomographic Entropy and New Entropic Uncertainty Relations“. In Quantum Theory. AIP, 2007. http://dx.doi.org/10.1063/1.2827295.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Man'ko, Vladimir I., Guillaume Adenier, Andrei Yu Khrennikov, Pekka Lahti, Vladimir I. Man'ko und Theo M. Nieuwenhuizen. „Probability Instead of Wave Function and Bell Inequalities as Entanglement Criterion“. In Quantum Theory. AIP, 2007. http://dx.doi.org/10.1063/1.2827296.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Nieuwenhuizen, Th M., Guillaume Adenier, Andrei Yu Khrennikov, Pekka Lahti, Vladimir I. Man'ko und Theo M. Nieuwenhuizen. „The Pullback Mechanism in Stochastic Electrodynamics“. In Quantum Theory. AIP, 2007. http://dx.doi.org/10.1063/1.2827297.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Nieuwenhuizen, Th M., Guillaume Adenier, Andrei Yu Khrennikov, Pekka Lahti, Vladimir I. Man'ko und Theo M. Nieuwenhuizen. „The Relativistic Theory of Gravitation and its Application to Cosmology and Macroscopic Quantum Black Holes“. In Quantum Theory. AIP, 2007. http://dx.doi.org/10.1063/1.2827298.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Accardi, Luigi, Satoshi Uchiyama, Guillaume Adenier, Andrei Yu Khrennikov, Pekka Lahti, Vladimir I. Man'ko und Theo M. Nieuwenhuizen. „Universality of the EPR-chameleon model“. In Quantum Theory. AIP, 2007. http://dx.doi.org/10.1063/1.2827299.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Quantum theory"

1

Jafferis, Daniel. Topics in string theory, quantum field theory and quantum gravity. Office of Scientific and Technical Information (OSTI), März 2021. http://dx.doi.org/10.2172/1846570.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Adami, Christoph. Relativistic Quantum Information Theory. Fort Belvoir, VA: Defense Technical Information Center, November 2007. http://dx.doi.org/10.21236/ada490967.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Jaffe, Arthur M. "Quantum Field Theory and QCD". Office of Scientific and Technical Information (OSTI), Februar 2006. http://dx.doi.org/10.2172/891184.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Caldi, D. G. Studies in quantum field theory. Office of Scientific and Technical Information (OSTI), März 1993. http://dx.doi.org/10.2172/10165764.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Chudnovsky, Eugene M. Quantum Theory of Molecular Nanomagnets. Fort Belvoir, VA: Defense Technical Information Center, Februar 2001. http://dx.doi.org/10.21236/ada387444.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Hirshfeld, Allen. Deformation Quantization in Quantum Mechanics and Quantum Field Theory. GIQ, 2012. http://dx.doi.org/10.7546/giq-4-2003-11-41.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Lawrence, Albion, Matthew Headrick, Howard Schnitzer, Bogdan Stoica, Djordje Radicevic, Harsha Hampapura, Andrew Rolph, Jonathan Harper und Cesar Agon. Research in Quantum Field Theory, Cosmology, and String Theory. Office of Scientific and Technical Information (OSTI), März 2020. http://dx.doi.org/10.2172/1837060.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Zurek, Wojciech H. Quantum Theory of the Classical: Einselection, Envariance, and Quantum Darwinism. Office of Scientific and Technical Information (OSTI), April 2013. http://dx.doi.org/10.2172/1073733.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Light, John C. Quantum Theory of Fast Chemical Reactions. Office of Scientific and Technical Information (OSTI), Juli 2007. http://dx.doi.org/10.2172/910303.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Heifets, Samuel A. Quantum Theory of Optical Stochastic Cooling. Office of Scientific and Technical Information (OSTI), Dezember 2000. http://dx.doi.org/10.2172/784782.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie