Bücher zum Thema „Quantum stark effect“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Quantum stark effect.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-20 Bücher für die Forschung zum Thema "Quantum stark effect" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Bücher für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Fröman, Nanny. Stark effect in a hydrogenic atom or ion: Treated by the phase-integral method. London: Imperial College Press, 2008.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Esposito, Aniello. Band structure effects and quantum transport. Konstanz: Hartung-Gorre, 2011.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Guangjun, Mao, Hrsg. Relativistic microscopic quantum transport equation. Hauppauge, N.Y: Nova Science Publishers, 2005.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

V, Chang John, Hrsg. Trends in condensed matter physics research. Hauppauge, N.Y: Nova Science Publishers, 2005.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Magdalena, Nuñez, Hrsg. Progress in electrochemistry research. Hauppauge, N.Y: Nova Science Publishers, 2005.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

B, Elliot Thomas, Hrsg. Focus on semiconductor research. Hauppauge, N.Y: Nova Science Publishers, 2005.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Magdalena, Nuñez, Hrsg. Metal electrodeposition. Hauppauge, NY: Nova Science Publishers, 2005.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

P, Wass Andrew, Hrsg. Progress in neutron star research. New York: Nova Science Publishers, 2005.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

P, Norris Charles, Hrsg. Surface science: New research. Hauppauge, N.Y: Nova Science Publishers, 2005.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

N, Linke A., Hrsg. Progress in chemical physics research. Hauppauge, N.Y: Nova Science Publishers, 2005.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

B, Elliot Thomas, Hrsg. Trends in semiconductor research. Hauppauge, N.Y: Nova Science Publishers, 2005.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Magdalena, Nuñez, Hrsg. Trends in electrochemistry research. New York: Nova Science Publishers, 2005.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Lorenzo, Pareschi, und Russo Giovanni, Hrsg. Modelling and numerics of kinetic dissipative systems. Hauppauge, N.Y: Nova Science Publishers, 2005.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

K, Bregg Robert, Hrsg. Horizons in polymer research. Hauppauge, N.Y: Nova Science Publishers, 2005.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Duncan, Anthony, und Michel Janssen. Constructing Quantum Mechanics. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198845478.001.0001.

Der volle Inhalt der Quelle
Annotation:
This is the first of two volumes on the genesis of quantum mechanics. It covers the key developments in the period 1900–1923 that provided the scaffold on which the arch of modern quantum mechanics was built in the period 1923–1927 (covered in the second volume). After tracing the early contributions by Planck, Einstein, and Bohr to the theories of black‐body radiation, specific heats, and spectroscopy, all showing the need for drastic changes to the physics of their day, the book tackles the efforts by Sommerfeld and others to provide a new theory, now known as the old quantum theory. After some striking initial successes (explaining the fine structure of hydrogen, X‐ray spectra, and the Stark effect), the old quantum theory ran into serious difficulties (failing to provide consistent models for helium and the Zeeman effect) and eventually gave way to matrix and wave mechanics. Constructing Quantum Mechanics is based on the best and latest scholarship in the field, to which the authors have made significant contributions themselves. It breaks new ground, especially in its treatment of the work of Sommerfeld and his associates, but also offers new perspectives on classic papers by Planck, Einstein, and Bohr. Throughout the book, the authors provide detailed reconstructions (at the level of an upper‐level undergraduate physics course) of the cental arguments and derivations of the physicists involved. All in all, Constructing Quantum Mechanics promises to take the place of older books as the standard source on the genesis of quantum mechanics.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Kenyon, Ian R. Quantum 20/20. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198808350.001.0001.

Der volle Inhalt der Quelle
Annotation:
This text reviews fundametals and incorporates key themes of quantum physics. One theme contrasts boson condensation and fermion exclusivity. Bose–Einstein condensation is basic to superconductivity, superfluidity and gaseous BEC. Fermion exclusivity leads to compact stars and to atomic structure, and thence to the band structure of metals and semiconductors with applications in material science, modern optics and electronics. A second theme is that a wavefunction at a point, and in particular its phase is unique (ignoring a global phase change). If there are symmetries, conservation laws follow and quantum states which are eigenfunctions of the conserved quantities. By contrast with no particular symmetry topological effects occur such as the Bohm–Aharonov effect: also stable vortex formation in superfluids, superconductors and BEC, all these having quantized circulation of some sort. The quantum Hall effect and quantum spin Hall effect are ab initio topological. A third theme is entanglement: a feature that distinguishes the quantum world from the classical world. This property led Einstein, Podolsky and Rosen to the view that quantum mechanics is an incomplete physical theory. Bell proposed the way that any underlying local hidden variable theory could be, and was experimentally rejected. Powerful tools in quantum optics, including near-term secure communications, rely on entanglement. It was exploited in the the measurement of CP violation in the decay of beauty mesons. A fourth theme is the limitations on measurement precision set by quantum mechanics. These can be circumvented by quantum non-demolition techniques and by squeezing phase space so that the uncertainty is moved to a variable conjugate to that being measured. The boundaries of precision are explored in the measurement of g-2 for the electron, and in the detection of gravitational waves by LIGO; the latter achievement has opened a new window on the Universe. The fifth and last theme is quantum field theory. This is based on local conservation of charges. It reaches its most impressive form in the quantum gauge theories of the strong, electromagnetic and weak interactions, culminating in the discovery of the Higgs. Where particle physics has particles condensed matter has a galaxy of pseudoparticles that exist only in matter and are always in some sense special to particular states of matter. Emergent phenomena in matter are successfully modelled and analysed using quasiparticles and quantum theory. Lessons learned in that way on spontaneous symmetry breaking in superconductivity were the key to constructing a consistent quantum gauge theory of electroweak processes in particle physics.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Maggiore, Michele. Gravitational Waves. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198570899.001.0001.

Der volle Inhalt der Quelle
Annotation:
A comprehensive and detailed account of the physics of gravitational waves and their role in astrophysics and cosmology. The part on astrophysical sources of gravitational waves includes chapters on GWs from supernovae, neutron stars (neutron star normal modes, CFS instability, r-modes), black-hole perturbation theory (Regge-Wheeler and Zerilli equations, Teukoslky equation for rotating BHs, quasi-normal modes) coalescing compact binaries (effective one-body formalism, numerical relativity), discovery of gravitational waves at the advanced LIGO interferometers (discoveries of GW150914, GW151226, tests of general relativity, astrophysical implications), supermassive black holes (supermassive black-hole binaries, EMRI, relevance for LISA and pulsar timing arrays). The part on gravitational waves and cosmology include discussions of FRW cosmology, cosmological perturbation theory (helicity decomposition, scalar and tensor perturbations, Bardeen variables, power spectra, transfer functions for scalar and tensor modes), the effects of GWs on the Cosmic Microwave Background (ISW effect, CMB polarization, E and B modes), inflation (amplification of vacuum fluctuations, quantum fields in curved space, generation of scalar and tensor perturbations, Mukhanov-Sasaki equation,reheating, preheating), stochastic backgrounds of cosmological origin (phase transitions, cosmic strings, alternatives to inflation, bounds on primordial GWs) and search of stochastic backgrounds with Pulsar Timing Arrays (PTA).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Levin, Frank S. Macroscopic Manifestations of Quantum Mechanics. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198808275.003.0013.

Der volle Inhalt der Quelle
Annotation:
Some possibly unexpected macroscopic manifestations of quantum mechanics are described in Chapter 12. The first is a laser, a device both man-made and one that relies on phase effects to achieve its potent beam. How this is done is illustrated by a diagram. The next is an estimate of the maximum height of a mountain, whose result was originally shown to rely on quantum mechanics. That result, approximately 30 km, is followed by showing that white dwarf and neutron stars are each gigantic manifestations of the Pauli Exclusion Principle, the first mainly consisting of carbon nuclei and electrons, the second mainly of neutrons. In each case, the primary constituent is a fermion, whose quantum behavior is governed by the Exclusion Principle. Along the way to showing this is a review of stellar evolution and energy sources. The final example is the first quantum machine, which is barely macroscopic.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Modeling And Numerics of Kinetic Dissipative Systems. Nova Science Publishers, 2006.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

(Contributor), Askin Ankay, Ai Bao-quan (Contributor), Ilona Bednarek (Contributor) und Andrew P. Wass (Editor), Hrsg. Progress in Nuetron Star Research. Nova Science Publishers, 2006.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie