Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Quantum optics Measurement“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Quantum optics Measurement" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Quantum optics Measurement"
Walls, DF. „Quantum Measurements in Atom Optics“. Australian Journal of Physics 49, Nr. 4 (1996): 715. http://dx.doi.org/10.1071/ph960715.
Der volle Inhalt der QuelleHradil, Z. „Phase measurement in quantum optics“. Quantum Optics: Journal of the European Optical Society Part B 4, Nr. 2 (April 1992): 93–108. http://dx.doi.org/10.1088/0954-8998/4/2/004.
Der volle Inhalt der QuelleXavier, Jolly, Deshui Yu, Callum Jones, Ekaterina Zossimova und Frank Vollmer. „Quantum nanophotonic and nanoplasmonic sensing: towards quantum optical bioscience laboratories on chip“. Nanophotonics 10, Nr. 5 (01.03.2021): 1387–435. http://dx.doi.org/10.1515/nanoph-2020-0593.
Der volle Inhalt der QuelleWalls, DF, MJ Collett, EP Storey und SM Tan. „Quantum Measurements in Atomic Optics“. Australian Journal of Physics 46, Nr. 1 (1993): 61. http://dx.doi.org/10.1071/ph930061.
Der volle Inhalt der QuelleChabaud, Ulysse, Damian Markham und Adel Sohbi. „Quantum machine learning with adaptive linear optics“. Quantum 5 (05.07.2021): 496. http://dx.doi.org/10.22331/q-2021-07-05-496.
Der volle Inhalt der QuelleMolotkov, S. N. „Homodyne detection in quantum optics: deterministic extractors and quantum random number generators on ‘vacuum fluctuations’“. Laser Physics 32, Nr. 5 (07.04.2022): 055202. http://dx.doi.org/10.1088/1555-6611/ac5ccc.
Der volle Inhalt der QuelleKrotkov, Robert. „Quantum Optics, Experimental Gravitation, and Measurement Theory“. American Journal of Physics 53, Nr. 8 (August 1985): 795–96. http://dx.doi.org/10.1119/1.14327.
Der volle Inhalt der QuelleKOASHI, Masato. „Recent Progress in Quantum Optics. Quantum Cryptography and Measurement of Quantum States.“ Review of Laser Engineering 28, Nr. 10 (2000): 677–81. http://dx.doi.org/10.2184/lsj.28.677.
Der volle Inhalt der QuelleCastro Santis, Ricardo. „Quantum stochastic dynamics in multi-photon optics“. Infinite Dimensional Analysis, Quantum Probability and Related Topics 17, Nr. 01 (März 2014): 1450007. http://dx.doi.org/10.1142/s0219025714500076.
Der volle Inhalt der QuelleChen, Sixin, Taxue Ma, Qian Yu, Pengcheng Chen, Xinzhe Yang, Xuewei Wu, Hai Sang et al. „A perspective on the manipulation of orbital angular momentum states in nonlinear optics“. Applied Physics Letters 122, Nr. 4 (23.01.2023): 040503. http://dx.doi.org/10.1063/5.0135224.
Der volle Inhalt der QuelleDissertationen zum Thema "Quantum optics Measurement"
Cooper, Merlin Frederick Wilmot. „Measurement and manipulation of quantum states of travelling light fields“. Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:79164748-ebb3-48e2-b4d4-1a4766d29217.
Der volle Inhalt der QuellePregnell, Kenneth Lyell, und n/a. „Retrodictive Quantum State Engineering“. Griffith University. School of Science, 2004. http://www4.gu.edu.au:8080/adt-root/public/adt-QGU20041029.134933.
Der volle Inhalt der QuelleKozlowski, Wojciech. „Competition between weak quantum measurement and many-body dynamics in ultracold bosonic gases“. Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:8da45dd9-27f9-42b6-8bae-8001d0154966.
Der volle Inhalt der QuelleElouard, Cyril. „Thermodynamics of quantum open systems : applications in quantum optics and optomechanics“. Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAY046/document.
Der volle Inhalt der QuelleThermodynamics was developed in the XIXth century to provide a physical description to engines and other macroscopic thermal machines. Since then, progress in nanotechnologies urged to extend these formalism, initially designed for classical systems, to the quantum world. During this thesis, I have built a formalism to study the stochastic thermodynamics of quantum systems, in which quantum measurement plays a central role : like the thermal reservoir of standard stochastic thermodynamics, it is the primary source of randomness in the system's dynamics. I first studied projective measurement as a thermodynamic process. I evidenced that measurement is responsible for an uncontroled variation of the system's energy that I called quantum heat, and also a production of entropy. As a proof of concept, I proposed an engine extracting work from the measurement-induced quantum fluctuations. Then, I extended this formalism to generalized measurements, which allowed to describe open quantum systems (i.e. in contact with reservoirs). I defined work, heat and entropy production for single realizations of thermodynamic protocols, and retrieved that these quantities obey fluctuation theorems. I applied this formalism to the canonical situation of quantum optics, i.e. a Qubit coupled to a laser and a the vacuum. Finally, I studied a promising platform to test Qubit's thermodynamics: a hybrid optomechanical system.The formalism developed in this thesis could be of interest for the quantum thermodynamics community as it enables to characterize quantum heat engines and compare their performances to their classical analogs. Furthermore, as it sets quantum measurement as a thermodynamic process, it pave the ways to a new kind of thermodynamic machines, exploiting the specificities of quantum realm in an unprecedented way
Buchler, Benjamin Caird. „Electro-optic control of quantum measurements“. View thesis entry in Australian Digital Theses Program, 2001. http://thesis.anu.edu.au/public/adt-ANU20020527.131758/index.html.
Der volle Inhalt der QuelleWebb, James Engineering & Information Technology Australian Defence Force Academy UNSW. „The measurement, creation and manipulation of quantum optical states via photodetection“. Awarded by:University of New South Wales - Australian Defence Force Academy. Engineering & Information Technology, 2009. http://handle.unsw.edu.au/1959.4/43686.
Der volle Inhalt der QuelleFolland, Thomas. „Frequency control of terahertz quantum cascade lasers : theory and measurement“. Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/frequency-control-of-terahertz-quantum-cascade-lasers-theory-and-measurement(d4c55769-f053-4b79-aed3-e2fec575adde).html.
Der volle Inhalt der QuelleArzani, Francesco. „Measurement based quantum information with optical frequency combs“. Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLEE005/document.
Der volle Inhalt der QuelleThe present manuscript reports theoretical investigations about the use of recently developed experimental techniques in the realization of quantum information protocols with continuous variables. The focus of the work is on the multi-mode Gaussian states produced by spontaneous parametric down-conversion of optical frequency combs. Such setup allows to deterministicallyengineer many different Gaussian states of light. The output state can be de-Gaussified subtracting or adding a photon coherently on a superposition of modes and finally measured with pulse-shaped and wavelength-multiplexed homodyne detection. The thesis encompasses three projects. The first concerns the optimization of the spectrum of the pump laser field to engineer the Gaussian output state. We developed mathematical techniques to treat spectral profiles with arbitrary amplitude and spectral phase. We thenran an optimization algorithm to find the spectra maximizing several interesting properties of the state of the down-converted field. A particular emphasis was put on the production of continuous-variable cluster states. The optimizations were developed in such a way as to ensure the experimental feasibility of the optimized pump spectra. In the second project we studied how the non-Gaussian states produced subtracting a photon from a squeezed state can be used for quantum computation. We propose a protocol inspired by the measurement-based paradigm for quantum computation combining the photon subtracted states and homodyne detectionto approximate unitary non-Gaussian operations. We show that the same results can be obtained with projective measurements onsingle-photon states. Finally, the third project deals with quantum secret sharing. In quantum secret sharing schemes a dealer wants to share information encoded in some quantum system with a group of players in such a way that subsets of players need to collaborate if they want to retrieve the information. We devised a secret sharing protocol that could be mapped to the experimental setups developed in our group and participated in the formulation of an experimental proof of principle of such protocol. Starting from this we derived general results for sharing and reconstructing arbitrary quantum states using Gaussian resources
Thomas-Peter, Nicholas. „Quantum enhanced precision measurement and information processing with integrated photonics“. Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:7bd47582-d32f-4d07-9e90-4978c32cf14e.
Der volle Inhalt der QuelleMazzucchi, Gabriel. „Conditional many-body dynamics and quantum control of ultracold fermions and bosons in optical lattices coupled to quantized light“. Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:6c6eddac-41de-476d-851e-6630907965e6.
Der volle Inhalt der QuelleBücher zum Thema "Quantum optics Measurement"
Tombesi, P., und D. F. Walls. Quantum measurements in optics. New York: Springer Science, 1992.
Den vollen Inhalt der Quelle findenInternational Workshop on Quantum Communications and Measurement (1994 Nottingham, England). Quantum communications and measurement. New York: Plenum Press, 1995.
Den vollen Inhalt der Quelle findenTombesi, P., und O. Hirota. Quantum communication, computing, and measurement 3. New York: Kluwer Academic, 2002.
Den vollen Inhalt der Quelle findenInternational Conference on Quantum Communication, Measurement, and Computing (4th 1998 Northwestern University, Evanston, Ill.). Quantum communication, computing and measurement 2. New York: Kluwer Academic/Plenum Publishers, 2000.
Den vollen Inhalt der Quelle findenInternational Conference on Quantum Communication, Measurement, and Computing (4th 1998 Northwestern University, Evanston, Ill.). Quantum communication, computing and measurement 2. New York: Kluwer Academic/Plenum Publishers, 2000.
Den vollen Inhalt der Quelle findenInternational Conference on Quantum Communication, Measurement, and Computing (4th 1998 Northwestern University). Quantum communication, computing and measurement 2. New York: Kluwer Academic, 2002.
Den vollen Inhalt der Quelle findenP, Belavkin V., Hirota O und Hudson R. L. 1960-, Hrsg. Quantum communications and measurement: [proceedings of an International Workshop on Quantum Communications and Measurement, held July 11-16, 1994, in Nottingham, England]. New York: Plenum Press, 1995.
Den vollen Inhalt der Quelle findenP, Tombesi, Hirota O. 1948- und International Conference on Quantum Communication, Measurement, and Computing (5th : 2000 : Capri, Italy), Hrsg. Quantum communication, computing, and measurement 3. New York: Kluwer Academic/Plenum Publishers, 2001.
Den vollen Inhalt der Quelle findenInternational, Conference on Quantum Communication Measurement and Computing (8th 2006 Tsukuba-shi Japan). Proceedings of the 8th International Conference on Quantum Communication, Measurement and Computing. [Tokyo]: National Institute of Information and Communications Technology, 2007.
Den vollen Inhalt der Quelle findenInternational Conference on Quantum Communication, Measurement, and Computing (8th 2006 Tsukuba-shi, Japan). Proceedings of the 8th International Conference on Quantum Communication, Measurement and Computing. Tokyo]: National Institute of Information and Communications Technology, 2007.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Quantum optics Measurement"
Walls, D. F., und G. J. Milburn. „Quantum Coherence and Measurement Theory“. In Quantum Optics, 297–314. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-79504-6_16.
Der volle Inhalt der QuelleStenholm, Stig. „Measurement Aspects of Quantum Optics“. In Quantum Chaos — Quantum Measurement, 231–40. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-015-7979-7_18.
Der volle Inhalt der QuellePeřina, Jan, Zdeněk Hradil und Branislav Jurčo. „Quantum theory of measurement“. In Quantum Optics and Fundamentals of Physics, 54–115. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0932-1_3.
Der volle Inhalt der QuelleGarraway, B. M., und P. L. Knight. „Stochastic Simulations of Dissipation in Quantum Optics: Quantum Superpositions“. In Quantum Communications and Measurement, 463–77. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4899-1391-3_46.
Der volle Inhalt der QuelleBrecha, R. J., und H. Walther. „The Quantum Measurement Process and the One-Atom Maser“. In Quantum Measurements in Optics, 93–104. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3386-3_8.
Der volle Inhalt der QuelleYamamoto, Yoshihisa, Wayne H. Richardson und Susumu Machida. „Quantum Mechanical Watch-Dog Effect and Measurement-Induced State Reduction in a Semiconductor Laser“. In Quantum Measurements in Optics, 65–84. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3386-3_6.
Der volle Inhalt der QuelleGrangier, Philippe, Jean-François Roch und Gérard Roger. „Quantum Non-Demolition Measurement of an Optical Intensity in a Three-Level Atomic Non-Linear System“. In Quantum Measurements in Optics, 85–92. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3386-3_7.
Der volle Inhalt der QuelleDavidovich, Luiz. „Decoherence and Quantum-State Measurement in Quantum Optics“. In Decoherence and Entropy in Complex Systems, 268–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-40968-7_19.
Der volle Inhalt der QuelleHerkommer, A. M., H. J. Carmichael und W. P. Schleich. „Localization of Atoms by Homodyne Measurement“. In Coherence and Quantum Optics VII, 543–44. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-9742-8_144.
Der volle Inhalt der QuelleMilburn, G. J., und B. C. Sanders. „Preparation of Nonclassical States by Conditional Measurement“. In Coherence and Quantum Optics VI, 753–57. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0847-8_138.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Quantum optics Measurement"
Boyd, Robert W. „Quantum Nonlinear Optics: Nonlinear Optics Meets the Quantum World“. In Quantum Information and Measurement. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/qim.2014.qtu2a.1.
Der volle Inhalt der QuelleRoussel, Benjamin, Clément Cabart und Pascal Degiovanni. „Quantum signal processing for electron quantum optics“. In Quantum Information and Measurement. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/qim.2017.qw5a.1.
Der volle Inhalt der QuelleXiang, Guoyong. „Quantum collective measurement“. In Quantum and Nonlinear Optics VII, herausgegeben von Kebin Shi, Chuan-Feng Li und Dai-Sik Kim. SPIE, 2020. http://dx.doi.org/10.1117/12.2575258.
Der volle Inhalt der QuelleZadeh, Iman Esmaeil, Ali Elshaari, Johannes W. N. Los, Ronan Gourgues, Julien Zichi, Sander Dorenbos, Michael E. Reimer et al. „Scalable quantum optics with nanowires“. In Quantum Information and Measurement. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/qim.2019.f4a.5.
Der volle Inhalt der QuelleLipson, Michal. „Silicon Photonic Platform for Quantum Optics“. In Quantum Information and Measurement. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/qim.2013.w5a.1.
Der volle Inhalt der QuelleAaronson, Scott, und Alex Arkhipov. „The Computational Complexity of Linear Optics“. In Quantum Information and Measurement. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/qim.2014.qth1a.2.
Der volle Inhalt der QuelleYokoyama, Shota, Nicola Dalla Pozza, Takahiro Serikawa, Katanya B. Kuntz, Trevor A. Wheatley, Daoyi Dong, Elanor H. Huntington und Hidehiro Yonezawa. „The Quantum Entanglement of Measurement“. In Frontiers in Optics. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/fio.2017.fth3e.6.
Der volle Inhalt der QuelleHayat, Alex, Pavel Ginzburg, David Neiman, Serge Rosenblum und Meir Orenstein. „Photon-Hole Quantum Nondemolition Measurement“. In Frontiers in Optics. Washington, D.C.: OSA, 2008. http://dx.doi.org/10.1364/fio.2008.fmh7.
Der volle Inhalt der QuelleGaeta, Alex. „Nonlinear Optics at the Few-Photon Level“. In Quantum Information and Measurement. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/qim.2013.th1.2.
Der volle Inhalt der QuelleChakhmakhchyan, Levon, und Nicolas J. Cerf. „Simulating Universal Gaussian Circuits with Linear Optics“. In Quantum Information and Measurement. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/qim.2019.f4b.4.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Quantum optics Measurement"
Pfeifer, K. B., und M. W. Jenkins. A fiber optic test system for quantum efficiency measurements. Office of Scientific and Technical Information (OSTI), Mai 1989. http://dx.doi.org/10.2172/5988907.
Der volle Inhalt der Quelle