Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Quantum electronics“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Quantum electronics" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Quantum electronics"
Mukhammadova, Dilafruz Ahmadovna. „The Role Of Quantum Electronics In Alternative Energy“. American Journal of Applied sciences 03, Nr. 01 (30.01.2021): 69–78. http://dx.doi.org/10.37547/tajas/volume03issue01-12.
Der volle Inhalt der QuelleZwanenburg, Floris A., Andrew S. Dzurak, Andrea Morello, Michelle Y. Simmons, Lloyd C. L. Hollenberg, Gerhard Klimeck, Sven Rogge, Susan N. Coppersmith und Mark A. Eriksson. „Silicon quantum electronics“. Reviews of Modern Physics 85, Nr. 3 (10.07.2013): 961–1019. http://dx.doi.org/10.1103/revmodphys.85.961.
Der volle Inhalt der QuelleSAKAKI, H. „Quantum Microstructures and Quantum Wave Electronics.“ Nihon Kessho Gakkaishi 33, Nr. 3 (1991): 107–18. http://dx.doi.org/10.5940/jcrsj.33.107.
Der volle Inhalt der QuelleGuo, Cheng, Jin Lin, Lian-Chen Han, Na Li, Li-Hua Sun, Fu-Tian Liang, Dong-Dong Li et al. „Low-latency readout electronics for dynamic superconducting quantum computing“. AIP Advances 12, Nr. 4 (01.04.2022): 045024. http://dx.doi.org/10.1063/5.0088879.
Der volle Inhalt der QuelleBorgarino, Mattia, und Alessandro Badiali. „Quantum Gates for Electronics Engineers“. Electronics 12, Nr. 22 (15.11.2023): 4664. http://dx.doi.org/10.3390/electronics12224664.
Der volle Inhalt der QuelleLiu, Mengxia, Nuri Yazdani, Maksym Yarema, Maximilian Jansen, Vanessa Wood und Edward H. Sargent. „Colloidal quantum dot electronics“. Nature Electronics 4, Nr. 8 (August 2021): 548–58. http://dx.doi.org/10.1038/s41928-021-00632-7.
Der volle Inhalt der QuelleTaichenachev, Alexey V. „Department of Quantum Electronics“. Siberian Journal of Physics 1, Nr. 1 (2006): 83–84. http://dx.doi.org/10.54238/1818-7994-2006-1-1-83-84.
Der volle Inhalt der QuelleSinclair, B. D. „Lasers and quantum electronics“. Physics Bulletin 37, Nr. 10 (Oktober 1986): 412. http://dx.doi.org/10.1088/0031-9112/37/10/013.
Der volle Inhalt der QuelleDragoman, M., und D. Dragoman. „Graphene-based quantum electronics“. Progress in Quantum Electronics 33, Nr. 6 (November 2009): 165–214. http://dx.doi.org/10.1016/j.pquantelec.2009.08.001.
Der volle Inhalt der QuelleRost, Jan-Michael. „Tubes for quantum electronics“. Nature Photonics 4, Nr. 2 (Februar 2010): 74–75. http://dx.doi.org/10.1038/nphoton.2009.279.
Der volle Inhalt der QuelleDissertationen zum Thema "Quantum electronics"
Li, Elise Yu-Tzu. „Electronic structure and quantum conductance of molecular and nano electronics“. Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/65270.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (p. 129-137).
This thesis is dedicated to the application of a large-scale first-principles approach to study the electronic structure and quantum conductance of realistic nanomaterials. Three systems are studied using Landauer formalism, Green's function technique and maximally localized Wannier functions. The main focus of this thesis lies on clarifying the effect of chemical modifications on electron transport at the nanoscale, as well as on predicting and designing new type of molecular and nanoelectronic devices. In the first study, we suggest and investigate a quantum interference effect in the porphyrin family molecules. We show that the transmission through a porphyrin molecule at or near the Fermi level varies by orders of magnitude following hydrogen tautomerization. The switching behavior identified in porphyrins implies new application directions in single molecular devices and molecular-size memory elements. Moving on from single molecules to a larger scale, we study the effect of chemical functionalizations to the transport properties of carbon nanotubes. We propose several covalent functionalization schemes for carbon nanotubes which display switchable on/off conductance in metallic tubes. The switching action is achieved by reversible control of bond-cleavage chemistry in [1+2] cycloadditions, via the 8p 3 8s p 2 rehybridization it induces; this leads to remarkable changes of conductance even at very low degrees of functionalization. Several strategies for real-time control on the conductance of carbon nanotubes are then proposed. Such designer functional groups would allow for the first time direct control of the electrical properties of metallic carbon nanotubes, with extensive applications in nanoscale devices. In the last part of the thesis we address the issue of low electrical conductivity observed in carbon nanotube networks. We characterize intertube tunneling between carbon nanotube junctions with or without a covalent linker, and explore the possibility of improving intertube coupling and enhance electrical tunneling by transition metal adsorptions on CNT surfaces. The strong hybridization between transition metal d orbitals with the CNT [pi] orbitals serves as an excellent electrical bridge for a broken carbon nanotube junction. The binding and coupling between a transition metal atom and sandwiching nanotubes can be even stronger in case of nitrogendoped carbon nanotubes. Our studies suggest a more effective strategy than the current cross-linking methods used in carbon nanotube networks.
by Elise Yu-Tzu Li.
Ph.D.
Midgley, Stuart. „Quantum waveguide theory“. University of Western Australia. School of Physics, 2003. http://theses.library.uwa.edu.au/adt-WU2004.0036.
Der volle Inhalt der QuelleLynch, Alastair M. „Low Cost and Flexible Electronics for Quantum Key Distribution and Quantum Information“. Thesis, University of Bristol, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.520592.
Der volle Inhalt der QuelleHinzer, Karin. „Semiconductor quantum dot lasers“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0003/MQ36702.pdf.
Der volle Inhalt der QuelleEl, Kass Abdallah. „Milli-Kelvin Electronics at the Quantum-Classical Interface“. Thesis, The University of Sydney, 2021. https://hdl.handle.net/2123/26889.
Der volle Inhalt der QuelleLittle, Reginald Bernard. „The synthesis and characterization of some II-VI semiconductor quantum dots, quantum shells and quantum wells“. Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/30573.
Der volle Inhalt der QuelleNakanishi, Toshihiro. „Coupled-resonator-based metamaterials emulating quantum systems“. 京都大学 (Kyoto University), 2016. http://hdl.handle.net/2433/204563.
Der volle Inhalt der QuelleKhalid, Ahmed Usman. „FPGA emulation of quantum circuits“. Thesis, McGill University, 2005. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=98979.
Der volle Inhalt der QuelleMcNeil, Robert Peter Gordon. „Surface acoustic wave quantum electronic devices“. Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610718.
Der volle Inhalt der QuelleJiang, Jun. „A Quantum Chemical View of Molecular and Nano-Electronics“. Doctoral thesis, Stockholm : Biotechnology, Kungliga tekniska högskolan, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4335.
Der volle Inhalt der QuelleBücher zum Thema "Quantum electronics"
R, Whinnery John, Hrsg. Quantum electronics. New York: IEEE, 1992.
Den vollen Inhalt der Quelle findenSalter, Heath. Quantum Electronics. New Delhi: World Technologies, 2011.
Den vollen Inhalt der Quelle findenKose, Volkmar. Superconducting Quantum Electronics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989.
Den vollen Inhalt der Quelle findenKose, Volkmar, Hrsg. Superconducting Quantum Electronics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-95592-1.
Der volle Inhalt der QuelleVolkmar, Kose, und Albrecht M, Hrsg. Superconducting quantum electronics. Berlin: Springer-Verlag, 1989.
Den vollen Inhalt der Quelle findenProkhorov, A. M., und I. Ursu, Hrsg. Trends in Quantum Electronics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-662-10624-2.
Der volle Inhalt der QuelleHirayama, Yoshiro, Kazuhiko Hirakawa und Hiroshi Yamaguchi, Hrsg. Quantum Hybrid Electronics and Materials. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1201-6.
Der volle Inhalt der QuelleInstitute of Electrical and Electronics Engineers., Hrsg. IEEE journal of quantum electronics. Piscatawy: IEEE, 1986.
Den vollen Inhalt der Quelle findenIEEE Lasers and Electro-Optics Society. und Institute of Electrical and Electronics Engineers., Hrsg. IEEE journal of quantum electronics. [s.l.]: IEEE Lasers and Electro-Optics Society, 1991.
Den vollen Inhalt der Quelle findenConference on Lasers and Electro-Optics. International quantum electronics conference (IQEC). Washington, D.C: Optical Society of America, 2006.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Quantum electronics"
Goser, Karl, Peter Glösekötter und Jan Dienstuhl. „Quantum Electronics“. In Nanoelectronics and Nanosystems, 151–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-05421-5_10.
Der volle Inhalt der QuelleKolawole, Michael Olorunfunmi. „Elements of Quantum Electronics“. In Electronics, 271–316. First edition. | Boca Raton, FL : CRC Press, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9781003052913-9.
Der volle Inhalt der QuelleSuits, Bryan H. „Quantum Logic“. In Electronics for Physicists, 305–20. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-36364-1_15.
Der volle Inhalt der QuelleKawabata, A. „Quantum Wires“. In Mesoscopic Physics and Electronics, 54–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-71976-9_8.
Der volle Inhalt der QuellePevzner, Vadim, und Karl Hess. „Quantum Ray Tracing: A New Approach to Quantum Transport in Mesoscopic Systems“. In Computational Electronics, 227–30. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4757-2124-9_45.
Der volle Inhalt der QuelleVan Haesendonck, C., und Y. Bruynseraede. „Quantum Interference in Normal Metals“. In Superconducting Electronics, 19–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-83885-9_2.
Der volle Inhalt der QuelleLübbig, H. „Classical Dynamics of Josephson Tunnelling and Its Quantum Limitations“. In Superconducting Quantum Electronics, 2–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-95592-1_1.
Der volle Inhalt der QuelleGutmann, P., und H. Bachmair. „Cryogenic Current Comparator Metrology“. In Superconducting Quantum Electronics, 255–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-95592-1_10.
Der volle Inhalt der QuelleAlbrecht, M., und W. Kessel. „Fast SQUID Pseudo Random Generators“. In Superconducting Quantum Electronics, 269–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-95592-1_11.
Der volle Inhalt der QuelleBrunk, G. „Modelling of Resistive Networks for Dispersive Tunnel Processes“. In Superconducting Quantum Electronics, 24–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-95592-1_2.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Quantum electronics"
Arnold, John M. „Teaching quantum electronics to electronic engineering undergraduates“. In Education and Training in Optics and Photonics 2001. SPIE, 2002. http://dx.doi.org/10.1117/12.468723.
Der volle Inhalt der QuelleKrokhin, O. N. „Quantum Electronics 50th Jubilee“. In SPIE Proceedings, herausgegeben von Yuri N. Kulchin, Jinping Ou, Oleg B. Vitrik und Zhi Zhou. SPIE, 2007. http://dx.doi.org/10.1117/12.726441.
Der volle Inhalt der QuelleSaglamyurek, E., N. Sinclair, J. Jin, J. S. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler und W. Tittel. „Quantum Memory For Quantum Repeaters“. In International Quantum Electronics Conference. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/iqec.2011.i93.
Der volle Inhalt der QuelleSchneider, Hans Christian, und Weng W. Chow. „Quantum coherence in semiconductor quantum dots“. In International Quantum Electronics Conference. Washington, D.C.: OSA, 2004. http://dx.doi.org/10.1364/iqec.2004.ithf2.
Der volle Inhalt der Quelle„2005 European Quantum Electronics Conference“. In EQEC '05. European Quantum Electronics Conference, 2005. IEEE, 2005. http://dx.doi.org/10.1109/eqec.2005.1567171.
Der volle Inhalt der Quelle„Joint Council on Quantum Electronics“. In CLEO 2007. IEEE, 2007. http://dx.doi.org/10.1109/cleo.2007.4452324.
Der volle Inhalt der QuelleBishnoi, Dimple. „Quantum dots: Rethinking the electronics“. In INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2015): Proceeding of International Conference on Condensed Matter and Applied Physics. Author(s), 2016. http://dx.doi.org/10.1063/1.4946309.
Der volle Inhalt der QuelleKrokhin, O. N. „Fifty Years of Quantum Electronics“. In ZABABAKHIN SCIENTIFIC TALKS - 2005: International Conference on High Energy Density Physics. AIP, 2006. http://dx.doi.org/10.1063/1.2337172.
Der volle Inhalt der QuelleSenami, Masato, und Akitomo Tachibana. „Quantum chemical approaches to the electronic structures of nano-electronics materials“. In 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT). IEEE, 2010. http://dx.doi.org/10.1109/icsict.2010.5667357.
Der volle Inhalt der QuelleFurusawa, Akira. „Quantum Teleportation and Quantum Information Processing“. In Quantum Electronics and Laser Science Conference. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/qels.2010.qtha1.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Quantum electronics"
De Heer, Walter A. Epitaxial Graphene Quantum Electronics. Fort Belvoir, VA: Defense Technical Information Center, Mai 2014. http://dx.doi.org/10.21236/ada604108.
Der volle Inhalt der QuelleBocko, Mark F., und Marc J. Feldman. Quantum Computing with Superconducting Electronics. Fort Belvoir, VA: Defense Technical Information Center, Februar 1998. http://dx.doi.org/10.21236/ada344625.
Der volle Inhalt der QuelleO'Connell, R. F. Small Systems: Single Electronics/Quantum Transport. Fort Belvoir, VA: Defense Technical Information Center, September 1994. http://dx.doi.org/10.21236/ada298817.
Der volle Inhalt der Quellevan der Heijden, Joost. Optimizing electron temperature in quantum dot devices. QDevil ApS, März 2021. http://dx.doi.org/10.53109/ypdh3824.
Der volle Inhalt der QuelleElmgren, Karson, Ashwin Acharya und Will Will Hunt. Superconductor Electronics Research. Center for Security and Emerging Technology, November 2021. http://dx.doi.org/10.51593/20210003.
Der volle Inhalt der QuelleBraga, Davide. NECQST: Novel Electronics for Cryogenic Quantum Sensors Technology. Office of Scientific and Technical Information (OSTI), Oktober 2019. http://dx.doi.org/10.2172/1630711.
Der volle Inhalt der QuelleFluegel, Brian. Fellowship in Physics/Modern Optics and Quantum Electronics. Fort Belvoir, VA: Defense Technical Information Center, Mai 1992. http://dx.doi.org/10.21236/ada253666.
Der volle Inhalt der QuelleGaskill, J. D. Fellowship in Physics/Modern Optics and Quantum Electronics. Fort Belvoir, VA: Defense Technical Information Center, Februar 1990. http://dx.doi.org/10.21236/ada218772.
Der volle Inhalt der QuelleSchoelkopf, R. J., und S. M. Girvin. Student Support for Quantum Computing With Single Cooper-Pair Electronics. Fort Belvoir, VA: Defense Technical Information Center, Januar 2006. http://dx.doi.org/10.21236/ada442606.
Der volle Inhalt der QuelleSchoelkopf, R. J., und S. M. Girvin. Student Support for Quantum Computing with Single Cooper-Pair Electronics. Fort Belvoir, VA: Defense Technical Information Center, Januar 2006. http://dx.doi.org/10.21236/ada465023.
Der volle Inhalt der Quelle