Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Quantum double model“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Quantum double model" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Quantum double model"
Favalli, T., und A. Smerzi. „A model of quantum spacetime“. AVS Quantum Science 4, Nr. 4 (Dezember 2022): 044403. http://dx.doi.org/10.1116/5.0107210.
Der volle Inhalt der QuelleFiedler, Leander, und Pieter Naaijkens. „Haag duality for Kitaev’s quantum double model for abelian groups“. Reviews in Mathematical Physics 27, Nr. 09 (Oktober 2015): 1550021. http://dx.doi.org/10.1142/s0129055x1550021x.
Der volle Inhalt der QuelleChen, Lei, Zhen-Yu Wang, Wu Hui, Cheng-Yu Chu, Ji-Min Chai, Jin Xiao, Yu Zhao und Jin-Xiang Ma. „Quantum ratchet effect in a time non-uniform double-kicked model“. International Journal of Modern Physics B 31, Nr. 16-19 (26.07.2017): 1744063. http://dx.doi.org/10.1142/s0217979217440635.
Der volle Inhalt der QuelleCui, Shawn X., Dawei Ding, Xizhi Han, Geoffrey Penington, Daniel Ranard, Brandon C. Rayhaun und Zhou Shangnan. „Kitaev's quantum double model as an error correcting code“. Quantum 4 (24.09.2020): 331. http://dx.doi.org/10.22331/q-2020-09-24-331.
Der volle Inhalt der QuelleVimala, Palanichamy, und N. R. Nithin Kumar. „Explicit Quantum Drain Current Model for Symmetric Double Gate MOSFETs“. Journal of Nano Research 61 (Februar 2020): 88–96. http://dx.doi.org/10.4028/www.scientific.net/jnanor.61.88.
Der volle Inhalt der QuelleDuan, Zhongzheng, Wenxi Luo und Xiaohan Xu. „Transmission coefficient in double barrier quantum tunnelling effect“. Theoretical and Natural Science 25, Nr. 1 (20.12.2023): 199–204. http://dx.doi.org/10.54254/2753-8818/25/20240965.
Der volle Inhalt der QuelleChen, Zuo Peng, und Jin Ran Gao. „The Research of Qubit-Field System Quantum Entanglement under J-C Model“. Applied Mechanics and Materials 203 (Oktober 2012): 464–68. http://dx.doi.org/10.4028/www.scientific.net/amm.203.464.
Der volle Inhalt der QuelleEdwards, D. M., A. C. M. Green und K. Kubo. „Quantum spins in the double exchange model of manganites“. Physica B: Condensed Matter 259-261 (Januar 1999): 810–11. http://dx.doi.org/10.1016/s0921-4526(98)00944-2.
Der volle Inhalt der QuelleBeigi, Salman, Peter W. Shor und Daniel Whalen. „The Quantum Double Model with Boundary: Condensations and Symmetries“. Communications in Mathematical Physics 306, Nr. 3 (28.06.2011): 663–94. http://dx.doi.org/10.1007/s00220-011-1294-x.
Der volle Inhalt der Quellede Martino, Salvatore, Silvio de Siena und Pasquale Sodano. „Critical behavior of the quantum double-sine-Gordon model“. Physical Review B 32, Nr. 5 (01.09.1985): 3304–5. http://dx.doi.org/10.1103/physrevb.32.3304.
Der volle Inhalt der QuelleDissertationen zum Thema "Quantum double model"
Ritz-Zwilling, Anna. „Topological order at finite temperature in string-net and quantum double models“. Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS268.
Der volle Inhalt der QuelleTopological order is a special kind of quantum order which appears in strongly interacting gappedquantum systems and does not admit a description by a local order parameter and spontaneous symmetry breaking. In two dimensions and at zero temperature, it is instead characterized by a ground-state degeneracy dependent on the manifold topology, long-range entanglement, and the presence of quasiparticles with fractional quantum numbers and exchange statistics (also called anyons). This thesis investigates topological order at finite temperature by means of two exactly-solvable toy models: the string-net model of Levin and Wen and the Kitaev quantum double model. The main focus is on the string-net model, which realizes all achiral doubled topological orders, i.e., all topological orders described by Drinfeld centers. This model takes a unitary fusion category as aninput, and produces the corresponding Drinfeld center as an output. First, we derive a formula forthe spectral degeneracies that depend on both the topology, and the topological order considered. In particular, the degeneracies depend not only on the Drinfeld center but also on theinput category. Next, we compute the partition function, from which we obtain the entropy, specific heat, and show that there is no finite-temperature phase transition. We identify a particular set of objects of the Drinfeld center, called pure fluxons, which drive the partition function in the thermodynamic limit, and study their properties. We also obtain the thermal averages of closed string operators, and study the mutual information. Finally, we carry over our approach to the quantum double models, where we also derive a general formula for the spectral degeneracies, partition function and entanglement entropy, allowing for a more general and detailed study of finite-temperature properties compared to previous studies
Kim, Ji S. „Electron transport through the double quantum dots in Aharonov-Bohm rings“. Virtual Press, 2005. http://liblink.bsu.edu/uhtbin/catkey/1319544.
Der volle Inhalt der QuelleDepartment of Physics and Astronomy
Fiedler, Leander Karl Wilhelm [Verfasser]. „Haag duality and Jones-Kosaki-Longo index in Kitaev's quantum double models for finite abelian groups / Leander Karl Wilhelm Fiedler“. Hannover : Technische Informationsbibliothek (TIB), 2017. http://d-nb.info/1136090622/34.
Der volle Inhalt der QuelleBianco, Gianluca. „Study of the quantum interference between singly and doubly resonant top-quark production in proton-proton collisions at the LHC with the ATLAS detector“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/22108/.
Der volle Inhalt der QuelleMichaille, Laurent. „Étude des états vibrationnels très excités de la molécule CS2 : dynamique non linéaire et corrélations spectrales“. Université Joseph Fourier (Grenoble ; 1971-2015), 1998. http://www.theses.fr/1998GRE10009.
Der volle Inhalt der QuellePlatt, Edward. „WKB Analysis of Tunnel Coupling in a Simple Model of a Double Quantum Dot“. Thesis, 2008. http://hdl.handle.net/10012/4145.
Der volle Inhalt der QuelleKómár, Anna. „Quantum Computation and Information Storage in Quantum Double Models“. Thesis, 2018. https://thesis.library.caltech.edu/10926/18/toriccode1.pdf.
Der volle Inhalt der QuelleThe results of this thesis concern the real-world realization of quantum computers, specifically how to build their "hard drives" or quantum memories. These are many-body quantum systems, and their building blocks are qubits, the same way bits are the building blocks of classical computers.
Quantum memories need to be robust against thermal noise, noise that would otherwise destroy the encoded information, similar to how strong magnetic field corrupts data classically stored in magnetic many-body systems (e.g., in hard drives). In this work I focus on a subset of many-body models, called quantum doubles, which, in addition to storing the information, could be used to perform the steps of the quantum computation, i.e., work as a "quantum processor".
In the first part of my thesis, I investigate how long a subset of quantum doubles (qudit surface codes) can retain the quantum information stored in them, referred to as their memory time. I prove an upper bound for this memory time, restricting the maximum possible performance of qudit surface codes.
Then, I analyze the structure of quantum doubles, and find two interesting properties. First, that the high-level description of doubles, utilizing only their quasi-particles to describe their states, disregards key components of their microscopic properties. In short, quasi-particles (anyons) of quantum doubles are not in a one-to-one correspondence with the energy eigenstates of their Hamiltonian. Second, by investigating phase transitions of a simple quantum double, D(S3), I map its phase diagram, and interpret the physical processes the theory undergoes through terms borrowed from the Landau theory of phase transitions.
Kim, Seyoung 1981. „Electron transport in graphene transistors and heterostructures : towards graphene-based nanoelectronics“. Thesis, 2012. http://hdl.handle.net/2152/ETD-UT-2012-05-5420.
Der volle Inhalt der Quelletext
Majumdar, Kausik. „Device Structure And Material Exploration For Nanoscale Transistor“. Thesis, 2011. https://etd.iisc.ac.in/handle/2005/2097.
Der volle Inhalt der QuelleMajumdar, Kausik. „Device Structure And Material Exploration For Nanoscale Transistor“. Thesis, 2011. http://etd.iisc.ernet.in/handle/2005/2097.
Der volle Inhalt der QuelleBücher zum Thema "Quantum double model"
My Double Unveiled: The Dissipative Quantum Model of Brain (Advances in Consciousness Research). John Benjamins Publishing Co, 2001.
Den vollen Inhalt der Quelle findenDyall, Kenneth G., und Knut Faegri. Introduction to Relativistic Quantum Chemistry. Oxford University Press, 2007. http://dx.doi.org/10.1093/oso/9780195140866.001.0001.
Der volle Inhalt der QuelleTanasa, Adrian. Combinatorial Physics. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780192895493.001.0001.
Der volle Inhalt der QuelleStuewer, Roger H. The Quantum-Mechanical Nucleus. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198827870.003.0005.
Der volle Inhalt der QuelleVigdor, Steven E. Trinity. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198814825.003.0003.
Der volle Inhalt der QuelleLaunay, Jean-Pierre, und Michel Verdaguer. The moving electron: electrical properties. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198814597.003.0003.
Der volle Inhalt der QuelleMorawetz, Klaus. Transient Time Period. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198797241.003.0019.
Der volle Inhalt der QuelleMathematical foundations of quantum field theory and perturbative string theory. Providence, R.I: American Mathematical Society, 2011.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Quantum double model"
Martín, Laura Ortiz. „Double Semion Model as a Quantum Memory“. In Springer Theses, 49–68. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23649-6_4.
Der volle Inhalt der QuellePrasad, G. Bhanu. „A Double Resonance Model for Lasers Without Inversion“. In Recent Developments in Quantum Optics, 479–84. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-2936-1_57.
Der volle Inhalt der QuelleGhatak, Ajoy, und S. Lokanathan. „The Double Well Potential and the Krönig-Penney Model“. In Quantum Mechanics: Theory and Applications, 401–22. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2130-5_16.
Der volle Inhalt der QuelleNaaijkens, Pieter. „Kitaev’s Quantum Double Model from a Local Quantum Physics Point of View“. In Advances in Algebraic Quantum Field Theory, 365–95. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-21353-8_9.
Der volle Inhalt der QuelleSacchetti, Andrea. „Double-Barrier Resonances and Time Decay of the Survival Probability: A Toy Model“. In Advances in Quantum Mechanics, 283–93. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58904-6_17.
Der volle Inhalt der QuelleXie, Zhaoqing, Qing Liu und Lanqing Xu. „A New Quantum-Behaved PSO: Based on Double δ-Potential Wells Model“. In Proceedings of 2016 Chinese Intelligent Systems Conference, 211–19. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2338-5_21.
Der volle Inhalt der QuelleIñarrea, Jesús, Gloria Platero und Allan H. MacDonald. „Microscopical Model for Hyperfine Interaction in Electronic Transport Through Double Quantum Dots: Spin Blockade Lifting“. In Progress in Industrial Mathematics at ECMI 2006, 440–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-71992-2_66.
Der volle Inhalt der QuelleKawamura, T., H. A. Fertig und J. P. Leburton. „Quantum Transport through One- Dimensional Double-Quantum-Well Systems“. In Physical Models for Quantum Wires, Nanotubes, and Nanoribbons, 509–20. New York: Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781003219378-39.
Der volle Inhalt der QuelleFonseca, L. R. C., J. L. Jimenez und J. P. Leburton. „Electronic Coupling in InAs/GaAs Self-Assembled Stacked Double Quantum Dot Systems“. In Physical Models for Quantum Dots, 589–605. New York: Jenny Stanford Publishing, 2021. http://dx.doi.org/10.1201/9781003148494-36.
Der volle Inhalt der QuelleZhang, L. X., D. V. Melnikov und J. P. Leburton. „Non-monotonic Variation of the Exchange Energy in Double Elliptic Quantum Dots“. In Physical Models for Quantum Dots, 321–36. New York: Jenny Stanford Publishing, 2021. http://dx.doi.org/10.1201/9781003148494-20.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Quantum double model"
Flågan, Sigurd, Patrick Maletinsky, Richard J. Warburton und Daniel Riedel. „Microcavity Platform for Widely Tunable Optical Double Resonance“. In Quantum 2.0, QTh2C.2. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/quantum.2024.qth2c.2.
Der volle Inhalt der QuelleDeshler, Nico, Itay Ozer, Amit Ashok und Saikat Guha. „Experimental Demonstration of a Quantum-Optimal Direct Imaging Coronagraph“. In Computational Optical Sensing and Imaging, CF1B.3. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cosi.2024.cf1b.3.
Der volle Inhalt der QuelleSabbagh, M. El, W. Fikry und O. A. Omar. „Quantum compact model for ballistic double gate MOSFETs“. In Technology of Integrated Systems in Nanoscal Era (DTIS). IEEE, 2009. http://dx.doi.org/10.1109/dtis.2009.4938043.
Der volle Inhalt der QuelleLin, Chung-hsun, Mohan Dunga, Ali Niknejad und Chenming Hu. „A Compact Quantum-Mechanical Model for Double-Gate MOSFET“. In 2006 8th International Conference on Solid-State and Integrated Circuit Technology Proceedings. IEEE, 2006. http://dx.doi.org/10.1109/icsict.2006.306111.
Der volle Inhalt der QuelleHeydari, Hoshang. „Entanglement dynamics of double Jaynes-Cummings interaction model based on geometric invariants“. In QUANTUM THEORY: RECONSIDERATION OF FOUNDATIONS 6. AIP, 2012. http://dx.doi.org/10.1063/1.4773154.
Der volle Inhalt der QuelleKostov, Ivan, Vladimir Kazakov und D. Kutasov. „Matrix model of the (1+1) dimensional dilatonic black hole in the double scaling limit“. In Non-perturbative Quantum Effects 2000. Trieste, Italy: Sissa Medialab, 2000. http://dx.doi.org/10.22323/1.006.0026.
Der volle Inhalt der QuelleGao, D. S., A. T. Yang, S. M. Kang, R. P. Bryan, M. E. Givens und J. J. Coleman. „A Quantum-Well Laser Model for Circuit Simulation“. In Numerical Simulation and Analysis in Guided-Wave Optics and Opto-Electronics. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/gwoe.1989.sa5.
Der volle Inhalt der QuelleCiprian, Dalibor, und Petr Hlubina. „Model of a double-sided surface plasmon resonance fiber-optic sensor“. In XIX Polish-Slovak-Czech Optical Conference on Wave and Quantum Aspects of Contemporary Optics, herausgegeben von Agnieszka Popiolek-Masajada und Waclaw Urbanczyk. SPIE, 2014. http://dx.doi.org/10.1117/12.2176037.
Der volle Inhalt der QuelleJingbo, Duan. „Big Data Classification Model and Algorithm Based on Double Quantum Particle Swarm Optimization“. In 2023 IEEE International Conference on Control, Electronics and Computer Technology (ICCECT). IEEE, 2023. http://dx.doi.org/10.1109/iccect57938.2023.10140247.
Der volle Inhalt der QuelleMedury, AdityaSankar, Kausik Majumdar, Navakanta Bhat und K. N. Bhat. „A compact model incorporating quantum effects for ultra-thin-body Double-Gate MOSFETs“. In 2010 IEEE 3rd International Nanoelectronics Conference (INEC). IEEE, 2010. http://dx.doi.org/10.1109/inec.2010.5424996.
Der volle Inhalt der Quelle