Dissertationen zum Thema „Quantum Dots (QD)“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-19 Dissertationen für die Forschung zum Thema "Quantum Dots (QD)" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Reinhart, Chase Collier. „Formulation of Colloidal Suspensions of 3-mercaptopropionic acid capped PbS Quantum Dots as Solution Processable QD "Inks" for Optoelectronic Applications“. PDXScholar, 2016. http://pdxscholar.library.pdx.edu/open_access_etds/3289.
Der volle Inhalt der QuelleStubbs, Stuart Kenneth. „Photo-physics and applications of colloidal quantum dots“. Thesis, University of Manchester, 2010. https://www.research.manchester.ac.uk/portal/en/theses/photophysics-and-applications-of-colloidal-quantum-dots(2391c0ce-b086-47a8-8600-a833657f85bc).html.
Der volle Inhalt der QuelleKethineedi, Venkata Ramana. „Synthesis and Applications of Luminescent Quantum Dots in Bioassays“. ScholarWorks@UNO, 2011. http://scholarworks.uno.edu/td/1416.
Der volle Inhalt der QuelleDrillat, François. „Encapsulation de Quantum Dots dans des copolymères blocs : formation de structures supramoléculaires organisées et utilisation en biologie comme nouveau marqueur fluorescent“. Phd thesis, Université Pierre et Marie Curie - Paris VI, 2008. http://tel.archives-ouvertes.fr/tel-00812058.
Der volle Inhalt der QuelleJames, Daniel. „Fabrication and electrical characterisation of quantum dots : uniform size distributions and the observation of unusual electrical characteristics and metastability“. Thesis, University of Manchester, 2010. https://www.research.manchester.ac.uk/portal/en/theses/fabrication-and-electrical-characterisation-of-quantum-dots-uniform-size-distributions-and-the-observation-of-unusual-electrical-characteristics-and-metastability(01bb9182-5290-4ad1-b6a4-3aed3970dbcf).html.
Der volle Inhalt der QuelleXiaohong, Tang, und Yin Zongyou. „MOCVD Growths of the InAs QD Structures for Mid-IR Emissions“. Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35383.
Der volle Inhalt der QuelleYe, Xinying. „SEMI-AUTOMATIC AND INTERACTIVE VISUALIZATION OF QUANTUM DOT NANO-STRUCTURES“. University of Akron / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=akron1195496291.
Der volle Inhalt der QuelleGuellil, Imene. „Nano-fonctionnalisation par FIB haute résolution de silicium“. Electronic Thesis or Diss., Aix-Marseille, 2022. http://www.theses.fr/2022AIXM0361.
Der volle Inhalt der QuelleThe goal of this work is to develop a process for the elaboration of silicon-germanium (SiGe) quantum dots (QDs) with compositions ranging from Si to pure Ge, and allowing to obtain semiconducting QDs with sufficiently small sizes to obtain quantum confinement. For this purpose, we have used a combination of different techniques: molecular beam epitaxy, focused ion beam lithography (FIBL) and heterogeneous solid state dewetting. In this context, the aim of this research is on the one hand to develop a new FIB that can be coupled to the ultra-high vacuum molecular beam epitaxy growth chamber, and on the other hand to realize two applications: (i) nanopatterns for the self-organisation of Si and Ge QDs and (ii) nano-implantations of Si and Ge. We used FIBL with energy-filtered liquid metal alloy ion sources (LMAIS) using non-polluting ions (Si and Ge) for the milling of conventional microelectronic substrates such as SiGe on silicon-on-insulator (SGOI). The nanopatterns must be totally free of pollution and with variable and perfectly controlled characteristics (size, density, depth). The morphology of the nanopatterns is then characterized in-situ by scanning electron microscopy (SEM), and the depth is determined ex-situ by atomic force microscopy (AFM). The nanopatterns made by FIBL were compared on the one hand to plasma etchings with He and Ne and on the other hand to the etchings obtained by electronic lithography (EBL). Nanoimplantations of Si and Ge ions were realised in diamond and in ultra-thin SGOI for the fabrication of local defects
Pereira, Geovane Módena. „Criptografia de qubits de férmions de Majorana por meio de estados ligados no contínuo“. Universidade Estadual Paulista (UNESP), 2017. http://hdl.handle.net/11449/152724.
Der volle Inhalt der QuelleApproved for entry into archive by Ana Paula Santulo Custódio de Medeiros null (asantulo@rc.unesp.br) on 2018-02-14T16:11:32Z (GMT) No. of bitstreams: 1 pereira_gm_me_rcla.pdf: 7420427 bytes, checksum: 0a0aec5beec2ecdd26883e0f4524844f (MD5)
Made available in DSpace on 2018-02-14T16:11:32Z (GMT). No. of bitstreams: 1 pereira_gm_me_rcla.pdf: 7420427 bytes, checksum: 0a0aec5beec2ecdd26883e0f4524844f (MD5) Previous issue date: 2017-12-01
Nós investigamos teoricamente uma cadeia topológica de Kitaev conectada a dois pontos quânticos (QDs) hibridizados a terminais metálicos. Neste sistema, observamos o surgimento de dois fenômenos marcantes: (i) uma decriptografia do Férmion de Majorana (MF), que é detectado por meio de medições de condutância devido ao estado de vazamento assimétrico do qubit de MFs nos QDs; (ii) criptografia desse qubit em ambos os QDs quando o vazamento é simétrico. Em tal regime, temos portanto a criptografia proposta, uma vez que o qubit de MFs separa-se nos QDs como estados ligados no contínuo (BICs), os quais não são detectáveis em experimentos de condutância.
We theoretically investigate a topological Kitaev chain connected to a double quantum-dot (QD) setup hybridized with metallic leads. In this system, we observe the emergence of two striking phenomena: i) a decrypted Majorana Fermion (MF) - qubit recorded over a single QD, which is detectable by means of conductance measurements due to the asymmetrical MF-leaked state into the QDs; ii) an encrypted qubit recorded in both QDs when the leakage is symmetrical. In such a regime, we have a cryptography-like manifestation, since the MF-qubit becomes bound states in the continuum, which is not detectable in conductance experiments.
Bain, Fiona Mair. „Yb:tungstate waveguide lasers“. Thesis, University of St Andrews, 2010. http://hdl.handle.net/10023/1698.
Der volle Inhalt der QuellePradeepa, H. L. „Study of Exciton Dynamics in MoS2 Monolayer and MoS2-QD Heterostructure“. Thesis, 2020. https://etd.iisc.ac.in/handle/2005/4651.
Der volle Inhalt der QuelleRekha, M. „Study of Charge Separation in Quantum Dots and Their Assemblies“. Thesis, 2017. http://etd.iisc.ac.in/handle/2005/3716.
Der volle Inhalt der QuelleRekha, M. „Study of Charge Separation in Quantum Dots and Their Assemblies“. Thesis, 2017. http://etd.iisc.ernet.in/2005/3716.
Der volle Inhalt der QuelleMukherjee, Arpita. „A Study of Dissipative Phenomena in Semiconductor Nanocrystals“. Thesis, 2020. https://etd.iisc.ac.in/handle/2005/5075.
Der volle Inhalt der QuelleIndian Institute of Science
Tripathi, Laxmi Narayan. „Preparation and Optical Properties of Hybrid Assemblies of Metallic Gold Nanoparticles and Semi-Conducting CdSe Quantum Dots“. Thesis, 2013. https://etd.iisc.ac.in/handle/2005/3411.
Der volle Inhalt der QuelleTripathi, Laxmi Narayan. „Preparation and Optical Properties of Hybrid Assemblies of Metallic Gold Nanoparticles and Semi-Conducting CdSe Quantum Dots“. Thesis, 2013. http://etd.iisc.ernet.in/2005/3411.
Der volle Inhalt der QuelleMartins, João Ricardo Gonçalves. „Study of the Förster resonance energy transfer in ensembles of colloidal PbS quantum dots, emitting in the near-infrared spectral range“. Master's thesis, 2020. http://hdl.handle.net/1822/73680.
Der volle Inhalt der QuelleFörster resonance energy transfer (FRET) is a non-radiative energy transfer mechanism between two light-emitting systems, such as two quantum dots (QDots) or molecules. This mechanism involves an excited donor fluorophore (e.g., a QDot or a dye molecule) which transfers its energy of excitation to an acceptor (another QDot or molecule which is in resonance with the donor), via dipole-dipole coupling. FRET is the dominant type of energy transfer between emitters at a nanometre proximity. Other factors that influence the efficiency of this energy transfer mechanism include the spectral overlap of the donor emission spectrum and the acceptor absorption spectrum and the relative orientation of the dipole moment of both particles. In nature, for instance, FRET plays a dominant role in the energy transfer in photosynthetic apparatus of plants and bacteria. Some interesting applications of FRET can be found in photovoltaics, probing of molecular distances and molecular interactions, and storage and transfer of quantum information. The main goal of this master thesis lies in detecting the presence of the FRET mechanism when two different colloidal QDot samples of PbS (short for Lead Sulfide), with different QDot size, are linked together via surface chemistry. This chemical procedure activates carboxyl or phosphate groups, which promote the binding of primary amines of organic glutathione QDot shell molecules. In other words, it promotes a cross-linkage between the organic shells of two, or more, quantum dots at a distance at which FRET is present. Using PbS quantum dots, which emit in the near-infrared (NIR) region of the light spectrum, these experiments can be reported as one of the first attempts to find The FRET mechanism in a near-infrared system of QDots. Most previous reports of FRET mechanisms were concerned with QDots which emit in the visible range, such as CdTe and CdSe QDots. The NIR spectral range, for instance, promotes interesting applications in photonic crystals, where FRET can be enhanced by spontaneous emission inhibition, in photovoltaics, in order to greatly absorb infrared light, and in the production of near-infrared QDot lasers. In order to find evidences of the presence of the FRET mechanism, emission spectra and time-resolved measurements, using the time correlated single photon counting technique (TCSPC), of cross-linked colloidal PbS QDot solutions have been performed and will be shown in this master thesis. Along with the experimental results, a study of statistical moments of the PbS quantum dot photoluminescence kinetics will be presented in this thesis, which experimental kinetics were acquired with TCSPC. With this statistical analysis, it is possible to evaluate and compare various decay properties, such as the average decay time, the mean-squared value of the decay and the measure of asymmetry of the time-resolved distribution. In order to understand the obtained results, some donor decay models were developed and studied, alongside with other decay functions found in the literature. A theoretical description of the FRET mechanism will be presented in order to understand the proposed decay models.
A transferência ressonante de energia de Förster (em inglês, Förster resonance energy transfer, ou, simplesmente, FRET) é um mecanismo de transferência de energia não radiativo presente entre duas unidades fluorescentes, como dois pontos quânticos ou duas moléculas. Neste mecanismo, um dador excitado (por exemplo, um ponto quântico ou uma molécula) transfere a sua energia de excitação para um aceitador (outro ponto quântico ou molécula) com o qual se encontre em ressonância, por acoplamento dipolo-dipolo. O FRET é um mecanismo dominante entre emissores distanciados entre si a uma ordem dos nanómetros. Outros fatores dominantes que influenciam a eficiência deste mecanismo de transferência são a sobreposição do espetro de emissão do dador com o espetro de absorção do aceitador e a orientação relativa do momento dipolar de ambas as partículas. Este mecanismo tem também um papel fundamental em processos biológicos como a fotossíntese em plantas e bactérias. Algumas aplicações de FRET podem ser encontradas em sistemas fotovoltaicos, na análise de distâncias e interações moleculares, e no armazenamento de informação quântica. O objetivo principal desta tese de mestrado é a deteção do mecanismo de FRET numa mistura coloidal de duas amostras pontos quânticos de PbS (símbolo químico para Galena, ou sulfeto de chumbo) com diferentes tamanhos, que são unidas por processos de química de superfícies. Estes processos químicos promovem, neste caso específico, ligações cruzadas físicas entre dois, ou mais, pontos quânticos, a uma distância da ordem dos nanómetros, que promove a presença de FRET. A deteção de FRET em sistemas de pontos quânticos que emitem no espetro infravermelho próximo (isto é, com comprimentos de onda entre 0.7 1.4mm), como os pontos quânticos de PbS, não é amplamente encontrada na literatura, a qual foca na deteção de mecanismos de FRET em pontos quânticos que emitem no espetro visível, como pontos quânticos de CdTe ou CdSe. O espetro infravermelho próximo permite, como exemplo, aplicações em cristais fotónicos, aonde o mecanismo de FRET é predominante pela inibição da emissão radiativa espontânea, assim como a aplicação em lasers que emitem no infravermelho e absorção de luz no infravermelho em sistemas fotovoltaicos. De forma a detetar a presença de FRET nas amostras de pontos quânticos, foram medidos espetros de emissão e cinéticas fotoluminescentes, estas obtidas por técnicas de resolução temporal de fotoluminescência como TCSPC (em inglês, Time Correlated Single Photon Counting). Em conjunto com os resultados experimentais obtidos, é apresentado nesta tese o estudo estatístico das cinéticas fotoluminescentes das amostras de pontos quânticos PbS, cujas cinéticas foram obtidas pela técnica de TCSPC. A partir desta análise estatística, é possível de avaliar e comparar várias propriedades das cinéticas, tais como o tempo médio de decaimento, o erro quadrático médio e a medida da assimetria da cinética obtida. De forma a compreender os resultados obtidos, alguns modelos de decaimentos do dador foram desenvolvidos e estudados, em conjunto com outras funções de decaimento que são encontradas na literatura. De forma a sustentar os modelos teóricos de decaimento, é também apresentado um tratamento teórico do mecanismo de FRET.
Moquin, Alexandre. „Points quantiques : caractérisation et applications en sciences pharmaceutiques“. Thèse, 2014. http://hdl.handle.net/1866/11758.
Der volle Inhalt der QuelleMedical imaging based on fluorescence has suffered from the poor photostability and mediocre performance of organic fluorophores. The discovery and subsequent improvements in nanocrystal synthesis and functionalization has greatly benefited the applications in medical imaging and the development of nanocrystal-based sensors for diagnostics. QDs are semi-conductor nanocrystals which have similar sizes as proteins (2-10 nm). They are highly luminescent, and can be made to emit at any desired wavelength by varying their size and composition. The surface of QDs can be easily functionalized with biomolecules. Hence, it is interesting to study how QDs interact in the biological world. Highly luminescent core-shell QDs emitting at different wavelengths were prepared according to our needs. In a first study, the surface of the QDs was modified with various small bi-functional thiolated ligands (carboxylated, aminated and zwitterionic). The modified-QDs of nearly identical sizes were administered in vitro to study the impact of surface charge and cell type on the mode and extent of cell uptake and elimination. Using specific inhibitors of cell uptake we determined which modes contributed to the internalization of the QDs. Endocytosis mediated by lipid rafts represented the predominant pathway for the internalization of QDs. However, other modes contributed to a lesser degree, depending on the surface ligand. We then analyzed the effect of QD agglomeration in cell culture media on its cellular uptake by microglia. Thorough characterization of QD agglomerate size distribution was conducted by asymmetrical flow field-flow fractionation (AF4) with a dynamic light scattering detector. Depending on the type of surface ligand and if serum proteins were present, the agglomeration pattern of the QDs was significantly different. With inhibitors of specific modes of cell uptake, we showed that the size distribution data, obtained by AF4, correlated with the modes of cell uptake. Microglia cells are immune cells of the central nervous system (CNS). They respond to injury or the presence of inflammagens by producing pro-inflammatory cytokine. Inflammation in the CNS may lead to loss of neurons, and can found in many chronic diseases. We were interested in building nanosensors to measure the onset of inflammation. Current methods to study inflammation consist in measuring levels of certain proteins or chemicals released by stressed cell (e.g. Western blot or ELISA assay for IL-1β). Although precise, these methods measure indirectly the activity of the enzyme responsible for releasing IL-1β, i.e. caspase-1. Moreover, these methods cannot be applied to live cells. We designed a sensor based on FRET between a QD and a dye linked by a peptide specifically cleaved by the caspase-1. To induce inflammation, we applied lipopolysaccharides (LPS), which are endotoxins present in Gram negative bacteria responsible for sceptic shock. The LPS form nanoparticles due to their amphiphilicity. The interior hydrophobic regions were used to load hydrophobic QDs, making the LPS luminescent. The microglia internalized LPS-QD predominantly through TLR-4 membrane receptors. We describe how the LPS induce inflammation and demonstrated the functionality of the QD-based sensor. Eventually, the sensor could be used to monitor in real time the action of therapeutics against inflammation.
Tauchnitz, Tina. „Novel Methods for Controlled Self-Catalyzed Growth of GaAs Nanowires and GaAs/AlxGa1-xAs Axial Nanowire Heterostructures on Si Substrates by Molecular Beam Epitaxy“. 2019. https://tud.qucosa.de/id/qucosa%3A38708.
Der volle Inhalt der QuelleGaAs-basierte Nanodrähte sind attraktive Bausteine für die Entwicklung von zukünftigen (opto)elektronischen Bauelementen dank ihrer exzellenten intrinsischen Materialeigenschaften wie zum Beispiel die direkte Bandlücke und die hohe Elektronenbeweglichkeit. Eine Voraussetzung für die Realisierung neuer Funktionalitäten auf einem einzelnen Si Chip ist die monolithische Integration der Nanodrähte auf der etablierten Si-Metall-Oxid-Halbleiter-Plattform (CMOS) mit präziser Kontrolle des Wachstumsprozesses der Nanodrähte. Das selbstkatalytische (Ga-unterstützte) Wachstum von GaAs Nanodrähten auf Si(111)-Substrat mittels Molekularstrahlepitaxie bietet die Möglichkeit vertikale Nanodrähte mit vorwiegend Zinkblende-Struktur herzustellen, während die potentielle Verunreinigung der Nanodrähte und des Substrats durch externe Katalysatoren wie Au vermieden wird. Obwohl der Wachstumsmechanismus gut verstanden ist, erweist sich die Kontrolle der Nukleationsphase, Anzahldichte und Kristallstruktur der Nanodrähte als sehr schwierig. Darüber hinaus sind relativ hohe Temperaturen im Bereich von 560-630 °C in konventionellen Wachstumsprozessen notwendig, die deren Anwendung auf der industriellen Si Plattform begrenzen. Die vorliegende Arbeit liefert zwei originelle Methoden um die bestehenden Herausforderungen in konventionellen Wachstumsprozessen zu bewältigen. Im ersten Teil dieser Arbeit wurde eine einfache Prozedur, bezeichnet als surface modification procedure (SMP), für die in situ Vorbehandlung von nativem-SiOx/Si(111)-Substrat entwickelt. Die Substratvorbehandlung mit Ga-Tröpfchen und zwei Hochtemperaturschritten vor dem Wachstumsprozess ermöglicht eine synchronisierte Nukleation aller Nanodrähte auf ihrem Substrat und folglich das Wachstum von sehr gleichförmigen GaAs Nanodraht-Ensembles mit einer sub-Poisson Verteilung der Nanodrahtlängen. Des Weiteren kann die Anzahldichte der Nanodrähte unabhängig von deren Abmessungen und ohne ex situ Vorstrukturierung des Substrats über drei Größenordnungen eingestellt werden. Diese Arbeit liefert außerdem ein grundlegendes Verständnis zur Nukleationskinetik von Ga-Tröpfchen auf nativem-SiOx und deren Wechselwirkung mit SiOx und bestätigt theoretische Voraussagen zum sogenannten Nukleations-Antibunching, dem Auftreten einer zeitlichen Anti-Korrelation aufeinanderfolgender Nukleationsereignisse. Im zweiten Teil dieser Arbeit wurde eine alternative Methode, bezeichnet als droplet-confined alternate-pulsed epitaxy (DCAPE), für das selbstkatalytische Wachstum von GaAs Nanodrähten und GaAs/AlxGa1-xAs axialen Nanodraht-Heterostrukturen entwickelt. DCAPE ermöglicht das Nanodrahtwachstum bei unkonventionell geringeren Temperaturen im Bereich von 450-550 °C und ist vollständig kompatibel mit der Standard-Si-CMOS-Plattform. Der neue Wachstumsansatz erlaubt eine präzise Kontrolle der Kristallstruktur der Nanodrähte und folglich das Wachstum von defektfreien Nanodrähten mit phasenreiner Zinkblende-Struktur. Die Stärke der DCAPE Methode wird des Weiteren durch das kontrollierte Wachstum von GaAs/AlxGa1-xAs axialen Quantentopf-Nanodrähten mit abrupten Grenzflächen und einstellbarer Dicke und Al-Anteil der AlxGa1-xAs-Segmente aufgezeigt. Die GaAs/AlxGa1-xAs axialen Nanodraht-Heterostrukturen sind interessant für den Einsatz als Einzelphotonen-Emitter mit einstellbarer Emissionswellenlänge, wenn diese mit gitterfehlangepassten InxAl1-xAs-Schichten in einer Kern-Hülle-Konfiguration überwachsen werden. Alle Ergebnisse dieser Arbeit tragen dazu bei, den Weg für eine erfolgreiche monolithische Integration von sehr gleichförmigen GaAs-basierten Nanodrähten mit kontrollierbarer Anzahldichte, Abmessungen und Kristallstruktur auf der industriell etablierten Si-Plattform zu ebnen.