Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Quantum Dots (QD).

Dissertationen zum Thema „Quantum Dots (QD)“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-19 Dissertationen für die Forschung zum Thema "Quantum Dots (QD)" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Reinhart, Chase Collier. „Formulation of Colloidal Suspensions of 3-mercaptopropionic acid capped PbS Quantum Dots as Solution Processable QD "Inks" for Optoelectronic Applications“. PDXScholar, 2016. http://pdxscholar.library.pdx.edu/open_access_etds/3289.

Der volle Inhalt der Quelle
Annotation:
The use of colloidal quantum dots (QDs) for photovoltaic energy conversion is a nascent field that has been dominated for well over a decade by the use of 3-mercaptopropionic acid (3-MPA) capped PbS QDs. These QDs are routinely deposited via an in situ solid state ligand exchange process that displaces the native oleate ligand on the PbS QD surface. This ligand exchange procedure is wasteful of material and has been demonstrated to leave numerous impurities that limit electronic performance of the as-deposited QD devices. Until the last few years there was very little understanding in chemical literature as to many important aspects of QD chemistry for this material pairing outside the framework of a QD solid. In this work, a colloidal suspension of 3-MPA capped PbS QDs in DMSO was formulated and investigated to probe ligand dynamics and optical properties of the suspended colloid. QD bound 3-MPA was found to be in dynamic exchange with "free" ligand in solution by 1H-NMR spectroscopy. Optical properties and colloidal stability were found to be heavily dependent on the presence of a significant excess of free ligand. PbS QDs were also found to be highly photo-catalytic towards oxidative dimerization of 3-MPA to its dimer, dithiodipropionic acid (dTdPA). After an initial colloidal suspension was achieved, attempts were made to directly deposit the colloid as a QD "ink" to form optoelectronic devices. While photo-switchable devices were obtained, ultimately it was determined that DMSO was a largely incompatible solvent choice for solution processing methodologies. Subsequently, 3-MPA capped PbS QD colloids were obtained in volatile organic solvents amenable to solution processing by the addition of a stabilizing ammonium salt. These QD colloids maintained excellently resolved optical properties and were able to form conformal coatings from simple evaporative deposition. The ligand chemistry of this colloid was extensively investigated via NMR and optical spectroscopy. These QDs were also found to be highly photo-catalytic towards conversion of monomer 3-MPA to dTdPA.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Stubbs, Stuart Kenneth. „Photo-physics and applications of colloidal quantum dots“. Thesis, University of Manchester, 2010. https://www.research.manchester.ac.uk/portal/en/theses/photophysics-and-applications-of-colloidal-quantum-dots(2391c0ce-b086-47a8-8600-a833657f85bc).html.

Der volle Inhalt der Quelle
Annotation:
The work presented in this thesis was submitted to The University of Manchester for the degree of Doctor of Philosophy in June 2010 by Stuart K Stubbs and is entitled “Photo-physics and applications of colloidal quantum dots”. In this thesis the results of spectroscopic studies on various colloidal quantum dots, particularly related to the measurement and characterisation of multiple exciton generation are presented. Research conducted with Nanoco Technologies Ltd. that involved the design and development of hybrid quantum dot organic light emitting diodes for use in flat panel display technology is also presented. Cadmium selenide (CdSe), indium phosphide (InP), and lead sulphide (PbS) type I and cadmium selenide/cadmium telluride type II colloidal quantum dots were characterised using steady state photoluminescence and absorption spectroscopy. The fluorescence lifetimes of the decay of single excitons was measured in these quantum dots using time correlated single photon counting. An ultrafast transient absorption spectrometer was designed, built, and used to observe the picosecond dynamics of the decay of multiexcitons. These absorption transients were analysed in order to extract the quantum efficiency of producing multiple excitons per absorbed photon. The characteristic signature for multiple exciton generation was first found in CdSe using a time correlated single photon counting set-up. Results from the transient absorption spectrometer demonstrated efficient multiple exciton generation in InP for the first time as well as in PbS, where the efficiency was found to agree with values obtained by other research groups. The absorption transients taken for the type II CdSe/CdTe type II quantum dots demonstrated some novel decay dynamics that could not be attributed to the generation of multiple excitons. Quantum dot organic light emitting diodes were fabricated using Nanoco Technologies high quality cadmium based quantum dots and were shown to demonstrate bright, colour saturated emission originating from the quantum dot layer only. Using quantum dots of different sizes and structures red, green and blue devices were made and shown to be appropriate both in terms of brightness and chromaticity for the use as the red, green and blue pixels of a flat panel display. Because heavy metals like cadmium are restricted or banned from commercial products in many countries, Nanoco Technologies heavy metal free quantum dots, made from InP, were also incorporated in devices. Devices are demonstrated that emit from the quantum dot layer only, albeit at a lower luminance and efficiency than that found in the cadmium containing devices. This was the first demonstration of a heavy metal free, hybrid quantum dot organic light emitting diode.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Kethineedi, Venkata Ramana. „Synthesis and Applications of Luminescent Quantum Dots in Bioassays“. ScholarWorks@UNO, 2011. http://scholarworks.uno.edu/td/1416.

Der volle Inhalt der Quelle
Annotation:
Luminescent quantum dot (QD) based probes have gained significance in the last decade for optical imaging of cells, tissues and in bioassays as alternatives to conventional organic fluorophores. The main objective of my PhD dissertation was to develop luminescent quantum dot based bioassays for real time monitoring of enzyme activity and simultaneous detection of several biomarkers. The quantum dot based bioassays developed will be potential tools in identification and diagnosis of several ailments that interfere with normal living conditions of human beings. In Chapter 2 new liposome encapsulated quantum dot based fluorescence resonance energy transfer (FRET) probes have been fabricated and characterized for monitoring the enzymatic activity of phospholipase A 2. The probes were able to detect the enzyme activity as low as 0.0075 U/mL (PLA2 = 1500 U/mg) in 30 min. Further these FRET probes were also used to screen the inhibition efficiencies of phospholipase A2 inhibitors. Chapter 3 focuses on the first time synthesis and characterization of liposome encapsulated InP/ZnS quantum dots while preserving the integrity of the liposomes. Results from the experiments to assess photostability and effect of pH on the optical properties of InP/ZnS QD-liposomes showed greater advantages over InP/ZnS quantum dots demonstrating their utility as a potential tool in several biological applications such as bio imaging, bioassays and in immunoassays. Chapter 4 discusses the development of fluorescence based immunoassay for simultaneous detection of the cardiac biomarkers troponin T and troponin I using CdSe/ZnS quantum dots. The assay achieved a detection limit was 0.1 pg/mL for both biomarkers troponin xi T and I. The method was highly specific for the both the biomarkers with no observed cross reactivity. The multiplex assay was able to detect two biomarkers simultaneously that will yield a high throughput diagnostic tool for heart attack. A similar method discussed as above was used in chapter 5 for the simultaneous detection of atherosclerosis biomarkers. The detection limits achieved in this study are comparable to the detection limits of the biomarkers reported so far. Incorporation of QDs in silica beads before conjugation to antibodies might improve detection limits that will also improve risk assessment.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Drillat, François. „Encapsulation de Quantum Dots dans des copolymères blocs : formation de structures supramoléculaires organisées et utilisation en biologie comme nouveau marqueur fluorescent“. Phd thesis, Université Pierre et Marie Curie - Paris VI, 2008. http://tel.archives-ouvertes.fr/tel-00812058.

Der volle Inhalt der Quelle
Annotation:
Le travail de recherche effectué durant cette thèse avait pour but de synthétiser des billes de polystyrène de taille sub-micrométriques contenant des points quantiques, aussi appelés " quantum dots " ou QDs. Cette technique est appelée encapsulation. Elle correspond à piéger un ou plusieurs QDs au sein de la matrice formée de polymère. Les QDs émettent de la fluorescence à une longueur d'onde dépendant de la taille du nanocristal et de sa composition chimique. Les QDs employés seront des QDs de CdSe émettant dans la gamme de 500nm à 630nm. Pour la réalisation de ces billes, nous avons opté pour un processus de mini-émulsion qui nous permet de produire des billes de latex en grande quantité et très monodisperses. Les propriétés optiques des QDs lors du processus d'encapsulation doivent alors être conservées. La principale difficulté a consisté à réaliser une dispersion homogène de QDs au sein des billes. Pour cela, il faut obtenir une répartition statistique des QDs dans chaque bille. L'utilité de développer ces billes (en polymères contenant des nanoparticules) de taille sub-micrométrique composites, est de solubiliser les QDs dans l'eau en vue d'application pour la biologie en tant que marqueurs. Ces objets, pourront alors être fonctionnalisés avec le greffage d'un groupement fonctionnel qui présentera une affinité spécifique pour un matériel biologique précis. Cette fonctionnalisation sera assurée par l'intermédiaire du surfactant qui permet de produire la mini-émulsion. Nous avons enfin, essayé de réaliser aussi des auto-assemblages de QDs avec des copolymères blocs chargés. Ce travail consistait également à réaliser des agrégats à la fois magnétiques et fluorescents.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

James, Daniel. „Fabrication and electrical characterisation of quantum dots : uniform size distributions and the observation of unusual electrical characteristics and metastability“. Thesis, University of Manchester, 2010. https://www.research.manchester.ac.uk/portal/en/theses/fabrication-and-electrical-characterisation-of-quantum-dots-uniform-size-distributions-and-the-observation-of-unusual-electrical-characteristics-and-metastability(01bb9182-5290-4ad1-b6a4-3aed3970dbcf).html.

Der volle Inhalt der Quelle
Annotation:
Quantum dots (QDs) are a semiconductor nanostructure in which a small island of one type of semiconductor material is contained within a larger bulk of a different one. These structure are interesting for a wide range of applications, including highly efficient LASERs, high-density novel memory devices, quantum computing and more. In order to understand the nature of QDs, electrical characterisation techniques such as capacitance-voltage (CV) profiling and deep-level transient spectroscopy (DLTS) are used to probe the nature of the carrier capture and emission processes. This is limited, however, by the nature of QD formation which results in a spread of sizes which directly affects the energy structure of the QDs. In this work, I sought to overcome this by using Si substrates patterned with a focused ion beam (FIB) to grow an array of identically-sized Ge dots. Although I was ultimately unsuccessful, I feel this approach has great merit for future applications.In addition, this thesis describes several unusual characteristics observed in InAs QDs in a GaAs bulk (grown by molecular beam epitaxy-MBE). Using conventional and Laplace DLTS, I have been able to isolate a single emission transient. I further show an inverted relation between the emission rate and the temperature under high field (emissions increase at lower temperatures). I attribute this to a rapid capture to and emission from excited states in the QD. In addition, I examine a metastable charging effect that results from the application of a sustained reverse bias and decreases the apparent emission rate from the dots. I believe this to be the result of a GaAs defect with a metastable state which acts as a screen, inhibiting emission from the dots due to an accumulation of charge in the metastable state. These unusual characteristics of QDs require further intensive work to fully understand. In this work I have sought to describe the phenomena fully and to provide hypotheses as to their origin.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Xiaohong, Tang, und Yin Zongyou. „MOCVD Growths of the InAs QD Structures for Mid-IR Emissions“. Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35383.

Der volle Inhalt der Quelle
Annotation:
In this research, InAs quantum dot structures for mid-infrared emission were self-assembled on InP substrate by using metal-organic chemical vapor deposition. To improve the grown quantum dot’s shape, the dot density and the dot size uniformity, a two-step growth method has been used and investigated. By changing the composition of the InxGa1 – xAs matrix layer of the InAs / InxGa1 – xAs / InP quantum dot structure, emission wavelength of the InAs quantum dot structure has been extended to the longest  2.35 m measured at 77 K. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/35383
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Ye, Xinying. „SEMI-AUTOMATIC AND INTERACTIVE VISUALIZATION OF QUANTUM DOT NANO-STRUCTURES“. University of Akron / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=akron1195496291.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Guellil, Imene. „Nano-fonctionnalisation par FIB haute résolution de silicium“. Electronic Thesis or Diss., Aix-Marseille, 2022. http://www.theses.fr/2022AIXM0361.

Der volle Inhalt der Quelle
Annotation:
Le but de ce travail est de développer un processus d’élaboration de boîtes quantiques (QD) de silicium-germanium (SiGe) avec des compositions allant du Si au Ge pur, et permettant d’obtenir des QD semi-conductrices et de tailles suffisamment petites pour l’obtention de confinement quantique. Pour cela, nous avons utilisé une combinaison de différentes techniques : l’épitaxie par jets moléculaires, la lithographie ionique par faisceau d’ions focalisés (FIBL) et le démouillage solide hétérogène. Dans ce contexte, la finalité de cette recherche est d’une part de développer un FIB qui puisse être couplé à un bâti d’épitaxie par jets moléculaires sous ultra-vide et d’autre part de valider le FIB avec deux applications : des nanogravures pour l’auto-organisation des QD et des nano-implantations de Si et de Ge pour la création de défauts locaux émetteurs de lumière. Nous avons utilisé la FIBL avec des sources d’ions d’alliage métallique liquide (LMAIS) filtrées en énergie utilisant des ions non polluants (Si et Ge) dans des substrats issus de la microélectronique tels que des substrats de SiGe sur silicium-sur-isolant (SGOI). Les nano-gravures doivent être totalement dénuées de pollution et aux caractéristiques variables et parfaitement contrôlées (taille, densité, profondeur). La morphologie des nano-gravures obtenues est ensuite caractérisée in-situ par microscopie électronique à balayage (SEM), et la profondeur est déterminée par des caractérisations ex-situ par microscopie de force atomique (AFM). Les nano-gravures réalisées par FIBL ont été comparées d’une part aux gravures plasmas avec He et Ne et d’autre part aux gravures obtenues par lithographie électronique (EBL)
The goal of this work is to develop a process for the elaboration of silicon-germanium (SiGe) quantum dots (QDs) with compositions ranging from Si to pure Ge, and allowing to obtain semiconducting QDs with sufficiently small sizes to obtain quantum confinement. For this purpose, we have used a combination of different techniques: molecular beam epitaxy, focused ion beam lithography (FIBL) and heterogeneous solid state dewetting. In this context, the aim of this research is on the one hand to develop a new FIB that can be coupled to the ultra-high vacuum molecular beam epitaxy growth chamber, and on the other hand to realize two applications: (i) nanopatterns for the self-organisation of Si and Ge QDs and (ii) nano-implantations of Si and Ge. We used FIBL with energy-filtered liquid metal alloy ion sources (LMAIS) using non-polluting ions (Si and Ge) for the milling of conventional microelectronic substrates such as SiGe on silicon-on-insulator (SGOI). The nanopatterns must be totally free of pollution and with variable and perfectly controlled characteristics (size, density, depth). The morphology of the nanopatterns is then characterized in-situ by scanning electron microscopy (SEM), and the depth is determined ex-situ by atomic force microscopy (AFM). The nanopatterns made by FIBL were compared on the one hand to plasma etchings with He and Ne and on the other hand to the etchings obtained by electronic lithography (EBL). Nanoimplantations of Si and Ge ions were realised in diamond and in ultra-thin SGOI for the fabrication of local defects
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Pereira, Geovane Módena. „Criptografia de qubits de férmions de Majorana por meio de estados ligados no contínuo“. Universidade Estadual Paulista (UNESP), 2017. http://hdl.handle.net/11449/152724.

Der volle Inhalt der Quelle
Annotation:
Submitted by GEOVANE MODENA PEREIRA null (geovanemodena@hotmail.com) on 2018-02-10T03:04:38Z No. of bitstreams: 1 Dissertação Geovane - Criptografia de Qubits de Férmions de Majorana por meio de Estados Ligados no Contínuo.pdf: 7524654 bytes, checksum: 0bd9409e8fa9c0c2da9190e44f4cfa33 (MD5)
Approved for entry into archive by Ana Paula Santulo Custódio de Medeiros null (asantulo@rc.unesp.br) on 2018-02-14T16:11:32Z (GMT) No. of bitstreams: 1 pereira_gm_me_rcla.pdf: 7420427 bytes, checksum: 0a0aec5beec2ecdd26883e0f4524844f (MD5)
Made available in DSpace on 2018-02-14T16:11:32Z (GMT). No. of bitstreams: 1 pereira_gm_me_rcla.pdf: 7420427 bytes, checksum: 0a0aec5beec2ecdd26883e0f4524844f (MD5) Previous issue date: 2017-12-01
Nós investigamos teoricamente uma cadeia topológica de Kitaev conectada a dois pontos quânticos (QDs) hibridizados a terminais metálicos. Neste sistema, observamos o surgimento de dois fenômenos marcantes: (i) uma decriptografia do Férmion de Majorana (MF), que é detectado por meio de medições de condutância devido ao estado de vazamento assimétrico do qubit de MFs nos QDs; (ii) criptografia desse qubit em ambos os QDs quando o vazamento é simétrico. Em tal regime, temos portanto a criptografia proposta, uma vez que o qubit de MFs separa-se nos QDs como estados ligados no contínuo (BICs), os quais não são detectáveis em experimentos de condutância.
We theoretically investigate a topological Kitaev chain connected to a double quantum-dot (QD) setup hybridized with metallic leads. In this system, we observe the emergence of two striking phenomena: i) a decrypted Majorana Fermion (MF) - qubit recorded over a single QD, which is detectable by means of conductance measurements due to the asymmetrical MF-leaked state into the QDs; ii) an encrypted qubit recorded in both QDs when the leakage is symmetrical. In such a regime, we have a cryptography-like manifestation, since the MF-qubit becomes bound states in the continuum, which is not detectable in conductance experiments.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Bain, Fiona Mair. „Yb:tungstate waveguide lasers“. Thesis, University of St Andrews, 2010. http://hdl.handle.net/10023/1698.

Der volle Inhalt der Quelle
Annotation:
Lasers find a wide range of applications in many areas including photo-biology, photo-chemistry, materials processing, imaging and telecommunications. However, the practical use of such sources is often limited by the bulky nature of existing systems. By fabricating channel waveguides in solid-state laser-gain materials more compact laser systems can be designed and fabricated, providing user-friendly sources. Other advantages inherent in the use of waveguide gain media include the maintenance of high intensities over extended interaction lengths, reducing laser thresholds. This thesis presents the development of Yb:tungstate lasers operating around 1μm in waveguide geometries. An Yb:KY(WO₄)₂ planar waveguide laser grown by liquid phase epitaxy is demonstrated with output powers up to 190 mW and 76 % slope efficiency. This is similar to the performance from bulk lasers but in a very compact design. Excellent thresholds of only 40 mW absorbed pump power are realised. The propagation loss is found to be less than 0.1 dBcm⁻¹ and Q-switched operation is also demonstrated. Channel waveguides are fabricated in Yb:KGd(WO₄)₂ and Yb:KY(WO₄)₂ using ultrafast laser inscription. Several of these waveguides lase in compact monolithic cavities. A maximum output power of 18.6 mW is observed, with a propagation loss of ~2 dBcm⁻¹. By using a variety of writing conditions the optimum writing pulse energy is identified. Micro-spectroscopy experiments are performed to enable a fuller understanding of the induced crystal modification. Observations include frequency shifts of Raman lines which are attributed to densification of WO₂W bonds in the crystal. Yb:tungstate lasers can generate ultrashort pulses and some preliminary work is done to investigate the use of quantum dot devices as saturable absorbers. These are shown to have reduced saturation fluence compared to quantum well devices, making them particularly suitable for future integration with Yb:tungstate waveguides for the creation of ultrafast, compact and high repetition rate lasers.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Pradeepa, H. L. „Study of Exciton Dynamics in MoS2 Monolayer and MoS2-QD Heterostructure“. Thesis, 2020. https://etd.iisc.ac.in/handle/2005/4651.

Der volle Inhalt der Quelle
Annotation:
The recent studies of two-dimensional semiconductors (2D) and their hybrid structure with zero-dimensional (0D) semiconductors have led to discovering of many fascinating properties that are absent in their bulk counterparts. Here in this thesis, we have looked into two such systems, monolayer MoS2 (2D), CdSe Quantum Dots (0D), and their hybrid structures. We start with the optoelectronic study of monolayer MoS2 FET devices fabricated in the cleanroom. We studied the dynamics of excitons (electron-hole pair), which have high binding energy at room temperature using steady-state photoluminescence (PL) and time-resolved photoluminescence (TRPL) in these devices by controlling the carrier density using both electrical and surface treatment using dopant. We observed neutral and charged exciton(trions) dominant regimes in some specific carrier density. In the second part of my thesis, I studied the optical properties of 2D-0D (MoS2-QD) hybrid structures using PL and TRPL characterization at room temperature. The 2D-OD heterostructure is of particular interest in understanding the various nonradiative energy channels such as FRET. In MoS2-QD hetero-structure, we control the emission efficiency of core QDs using the surface treatment for QDs, which controls the inter-dot separation, δ, and the separations between MoS2 and QD, d. At larger separations, we observe quenching of QD PL due to non radiative processes. At smaller separations, we observe enhanced emission from QDs on MoS2 compared to the larger separations despite the presence of significant non-radiative charge transfer and FRET. We observe some signatures of possible resonant radiative energy exchange between the 0D excitons in QDs and the 2D exciton in MoS2
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Rekha, M. „Study of Charge Separation in Quantum Dots and Their Assemblies“. Thesis, 2017. http://etd.iisc.ac.in/handle/2005/3716.

Der volle Inhalt der Quelle
Annotation:
This thesis reports a passive method for Fermi level regulation in quantum dot assemblies through ground state transfer between QDs. Here, ZnTe/CdS, and PbSe/CdSe core/shell QDs were used as valence band electron donors, while Cu containing CdS or ZnSe acts as electron acceptor QDs. Prior to study of ground state charge transfer process, this report discusses the synthesis of ZnTe/CdS, and PbSe/CdSe core shell QDs, which are later used to study charge transfer. Since ZnTe QDs are unstable and prone to oxidation, a CdS coated ZnTe QDs were used. Growing a CdS shell on ZnTe core is difficult because high reduction potential of Te. To overcome this problem, partially reduced sulphur is used for the synthesis of ZnTe/CdS. The peculiar optical properties exhibited by ZnTe/CdS also have been discussed. Even though the synthesis of Lead chalcogenide nanoparticles has been investigated previously, certain inconsistencies between the behavior expected from known mechanisms and empirical observations. An anion exchange mechanism is proposed and demonstrated to be involved in PbSe formation. Both ZnTe and PbSe based QDs are extensively used to study hole injection and copper containing QDs were used as acceptors. The charge transfer has been studied using optical spectroscopy. The structure and composition of the assemblies was identified using powder crystallography, electron-microscopy and composition analysis. The unique physical and chemical properties of these materials are exciting both fundamentally as well as from the point of view of applications.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Rekha, M. „Study of Charge Separation in Quantum Dots and Their Assemblies“. Thesis, 2017. http://etd.iisc.ernet.in/2005/3716.

Der volle Inhalt der Quelle
Annotation:
This thesis reports a passive method for Fermi level regulation in quantum dot assemblies through ground state transfer between QDs. Here, ZnTe/CdS, and PbSe/CdSe core/shell QDs were used as valence band electron donors, while Cu containing CdS or ZnSe acts as electron acceptor QDs. Prior to study of ground state charge transfer process, this report discusses the synthesis of ZnTe/CdS, and PbSe/CdSe core shell QDs, which are later used to study charge transfer. Since ZnTe QDs are unstable and prone to oxidation, a CdS coated ZnTe QDs were used. Growing a CdS shell on ZnTe core is difficult because high reduction potential of Te. To overcome this problem, partially reduced sulphur is used for the synthesis of ZnTe/CdS. The peculiar optical properties exhibited by ZnTe/CdS also have been discussed. Even though the synthesis of Lead chalcogenide nanoparticles has been investigated previously, certain inconsistencies between the behavior expected from known mechanisms and empirical observations. An anion exchange mechanism is proposed and demonstrated to be involved in PbSe formation. Both ZnTe and PbSe based QDs are extensively used to study hole injection and copper containing QDs were used as acceptors. The charge transfer has been studied using optical spectroscopy. The structure and composition of the assemblies was identified using powder crystallography, electron-microscopy and composition analysis. The unique physical and chemical properties of these materials are exciting both fundamentally as well as from the point of view of applications.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Mukherjee, Arpita. „A Study of Dissipative Phenomena in Semiconductor Nanocrystals“. Thesis, 2020. https://etd.iisc.ac.in/handle/2005/5075.

Der volle Inhalt der Quelle
Annotation:
Quantum dots (QDs) are semiconductor nanoparticles, where carriers are confined in regions smaller than a few tens of nanometers. The physics governing the behavior of these nano structures are fundamentally different from their bulk counterpart. This thesis studies the dissipative phenomena in QDs. In chapter 1, I give a brief introduction of QDs and their carrier dissipation dynamics. In chapter 2, I show that in CuInS2/CdS QDs, the spontaneous emission (SE) lifetime evolves from 46 ns to ~ 300 ns over a 15 ps time scale due to the collapse of the hole to the intragap states through dissipation. This is also observed in other chalcopyrite QDs. The results are obtained employing upconversion photoluminescence (UPL) measurements. In chapter 3, I try to understand the dissipation dynamics in chalcopyrite QDs by theoretical modelling. The study confirms the ultrafast hole localization in the system due to strong electron-phonon coupling as observed experimentally. However, the system possesses a very high defect-assisted SE lifetime which suggests that along with the vibrational coupling, fine-structure participation also needs to be considered which arises due to the involvement of copper d-orbitals to the valence band of the QDs. In chapter 4, I try to regulate dissipation through controlling SE rate by activating alternative radiative channels. For that, I consider CuCdZnSe QD alloys. From the UPL measurement, I find that this scheme enables us to tune SE lifetimes by three orders of magnitude, from ~ 15 ns to over ~ 7 μs. In chapter 5, I probe the ultrafast carrier dynamics of CuAlS2/ZnS QDs, which directly convert aqueous solutions of bicarbonate ions to formate with remarkable efficiency (~ 20 %). Here I show that it is essentially dominated by ultrafast electron transfer (560 fs) to the surface. In addition, I observe that the electron dwell time in the conduction band increases with the excitation fluence which is reverse of the auger recombination. I further investigate this system through two-pump transient absorption which show that the electron dynamics are governed by the temporal evolution of the hole wave function. In chapter 6, I utilize the dissipation in QDs and build all-optical switching and all-optical logic gates implementing microbubble. The experiments are done using low power continuous-wave laser. In conclusion, I have studied the carrier dissipation dynamics in QDs and built all-optical switching and universal all-optical logic gates which paves the way for the design of photonic circuits.
Indian Institute of Science
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Tripathi, Laxmi Narayan. „Preparation and Optical Properties of Hybrid Assemblies of Metallic Gold Nanoparticles and Semi-Conducting CdSe Quantum Dots“. Thesis, 2013. https://etd.iisc.ac.in/handle/2005/3411.

Der volle Inhalt der Quelle
Annotation:
This thesis summarizes the methods of preparation and optical properties of hybrid assemblies of Au NPs and cadmium selenide (CdSe) QDs. First chap-ter deals with the literature survey and theoretical aspects of plasmonics and discussions on optical excitations of metal (plasmons) and semiconducting QDs (excitons). Variation of energy levels of CdSe QDs and its optical properties i e. absorption and emission properties under strong confinement regime have been discussed with respect to effective mass approximation (EMA) model. This is followed by the discussion on optical properties of Au NPs and rods, describing absorption properties, based on Mie theory. Size and shape depen-dent variation of absorption properties. Theoretical discussions of collective effects in QDs assemblies and plasmonic interactions with the QDs assemblies i.e. plasmonic Dicke effect and metal nanoantenna interaction with CdSe QDs arrays is provided. In the second chapter a discussion on experimental techniques used for the study is provided. It starts with a discussion on the synthesis methods for CdSe QDs and Au NPs/rods with different capping ligands. Different techniques of preparation of CdSe QDs assemblies and their hybrid with metallic nanoparti-cles has been discussed. Further discussion on optical microscopy techniques, confocal, near field scanning microscopy (NSOM), Brewster angle microscopy and electron microscopy techniques i. e transmission electron microscopy and scanning electron microscopy and thermogravimetry analysis of the samples is provided. In the third chapter the details of the different self-assembly methods of preparation of hybrid assemblies of CdSe QDs and Au NPs /rods are given. The different strategies are used for different type of hybrids. In first method of Langmuir-Blodgett (LB) , effect of different capping agents, core size, and number ratios of Au NPs/rods to CdSe QDs, effect of anisotropy of Au NPs on the LB films of CdSe QDs assemblies is discussed. In another method of dip coating several control parameters like dip time, concentration of the solution and dip speed of transferring an aligned GNRs is given. Finally a combination of LB and dip coating methods is described for transferring aligned GNRs over a compact layer of CdSe QDs. At the end, a section is devoted to hit and trials of self-assemblies of hybrid of GNRs and CdSe QDs using LB method, the failures of which resulted in devising a method which uses a combination of LB and dip coating. In fourth chapter effects of plasmons on the collective emission of CdSe QDs assemblies are investigated. A plasmonic tuning of photoluminescence from semiconducting QD assemblies using Au NP in different ratio and different packing density has been discussed. We have described how the emission from a closed pack assemblies, prepared with different packing densities depends on the packing density and extent of spectral overlap between QD photolumi-nescence and the metal nanoparticle absorbance. We have provided possible evidence for plasmon mediated coherent emission enhancement from some of these assemblies from the case of strong spectral overlap between CdSe QDs and Au nanoparticle. In fifth chapter, we have demonstrated non local far field enhancement of PL in QDs assemblies induced by isolated and partially aligned GNRs nano-antenna located on such assemblies. It is shown that the emission is also anisotropic with the maxima being near such GNRs assembly which decays to finite, nonzero and significantly large values even away from the vicinity of any such assemblies. For this novel effect it is shown to have a clear spec-tral dependence. It is shown to be maximum when the longitudinal surface plasmon resonance absorption maxima is resonant with the CdSe QD photolu-minescence maxima and the excitation wavelength and is always non-existent for the off resonant case. We have also shown that finite difference time do-main simulations could model some of the observed near field effects but the far field effects could not be modelled in such simulations.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Tripathi, Laxmi Narayan. „Preparation and Optical Properties of Hybrid Assemblies of Metallic Gold Nanoparticles and Semi-Conducting CdSe Quantum Dots“. Thesis, 2013. http://etd.iisc.ernet.in/2005/3411.

Der volle Inhalt der Quelle
Annotation:
This thesis summarizes the methods of preparation and optical properties of hybrid assemblies of Au NPs and cadmium selenide (CdSe) QDs. First chap-ter deals with the literature survey and theoretical aspects of plasmonics and discussions on optical excitations of metal (plasmons) and semiconducting QDs (excitons). Variation of energy levels of CdSe QDs and its optical properties i e. absorption and emission properties under strong confinement regime have been discussed with respect to effective mass approximation (EMA) model. This is followed by the discussion on optical properties of Au NPs and rods, describing absorption properties, based on Mie theory. Size and shape depen-dent variation of absorption properties. Theoretical discussions of collective effects in QDs assemblies and plasmonic interactions with the QDs assemblies i.e. plasmonic Dicke effect and metal nanoantenna interaction with CdSe QDs arrays is provided. In the second chapter a discussion on experimental techniques used for the study is provided. It starts with a discussion on the synthesis methods for CdSe QDs and Au NPs/rods with different capping ligands. Different techniques of preparation of CdSe QDs assemblies and their hybrid with metallic nanoparti-cles has been discussed. Further discussion on optical microscopy techniques, confocal, near field scanning microscopy (NSOM), Brewster angle microscopy and electron microscopy techniques i. e transmission electron microscopy and scanning electron microscopy and thermogravimetry analysis of the samples is provided. In the third chapter the details of the different self-assembly methods of preparation of hybrid assemblies of CdSe QDs and Au NPs /rods are given. The different strategies are used for different type of hybrids. In first method of Langmuir-Blodgett (LB) , effect of different capping agents, core size, and number ratios of Au NPs/rods to CdSe QDs, effect of anisotropy of Au NPs on the LB films of CdSe QDs assemblies is discussed. In another method of dip coating several control parameters like dip time, concentration of the solution and dip speed of transferring an aligned GNRs is given. Finally a combination of LB and dip coating methods is described for transferring aligned GNRs over a compact layer of CdSe QDs. At the end, a section is devoted to hit and trials of self-assemblies of hybrid of GNRs and CdSe QDs using LB method, the failures of which resulted in devising a method which uses a combination of LB and dip coating. In fourth chapter effects of plasmons on the collective emission of CdSe QDs assemblies are investigated. A plasmonic tuning of photoluminescence from semiconducting QD assemblies using Au NP in different ratio and different packing density has been discussed. We have described how the emission from a closed pack assemblies, prepared with different packing densities depends on the packing density and extent of spectral overlap between QD photolumi-nescence and the metal nanoparticle absorbance. We have provided possible evidence for plasmon mediated coherent emission enhancement from some of these assemblies from the case of strong spectral overlap between CdSe QDs and Au nanoparticle. In fifth chapter, we have demonstrated non local far field enhancement of PL in QDs assemblies induced by isolated and partially aligned GNRs nano-antenna located on such assemblies. It is shown that the emission is also anisotropic with the maxima being near such GNRs assembly which decays to finite, nonzero and significantly large values even away from the vicinity of any such assemblies. For this novel effect it is shown to have a clear spec-tral dependence. It is shown to be maximum when the longitudinal surface plasmon resonance absorption maxima is resonant with the CdSe QD photolu-minescence maxima and the excitation wavelength and is always non-existent for the off resonant case. We have also shown that finite difference time do-main simulations could model some of the observed near field effects but the far field effects could not be modelled in such simulations.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Martins, João Ricardo Gonçalves. „Study of the Förster resonance energy transfer in ensembles of colloidal PbS quantum dots, emitting in the near-infrared spectral range“. Master's thesis, 2020. http://hdl.handle.net/1822/73680.

Der volle Inhalt der Quelle
Annotation:
Dissertação de mestrado em Physics
Förster resonance energy transfer (FRET) is a non-radiative energy transfer mechanism between two light-emitting systems, such as two quantum dots (QDots) or molecules. This mechanism involves an excited donor fluorophore (e.g., a QDot or a dye molecule) which transfers its energy of excitation to an acceptor (another QDot or molecule which is in resonance with the donor), via dipole-dipole coupling. FRET is the dominant type of energy transfer between emitters at a nanometre proximity. Other factors that influence the efficiency of this energy transfer mechanism include the spectral overlap of the donor emission spectrum and the acceptor absorption spectrum and the relative orientation of the dipole moment of both particles. In nature, for instance, FRET plays a dominant role in the energy transfer in photosynthetic apparatus of plants and bacteria. Some interesting applications of FRET can be found in photovoltaics, probing of molecular distances and molecular interactions, and storage and transfer of quantum information. The main goal of this master thesis lies in detecting the presence of the FRET mechanism when two different colloidal QDot samples of PbS (short for Lead Sulfide), with different QDot size, are linked together via surface chemistry. This chemical procedure activates carboxyl or phosphate groups, which promote the binding of primary amines of organic glutathione QDot shell molecules. In other words, it promotes a cross-linkage between the organic shells of two, or more, quantum dots at a distance at which FRET is present. Using PbS quantum dots, which emit in the near-infrared (NIR) region of the light spectrum, these experiments can be reported as one of the first attempts to find The FRET mechanism in a near-infrared system of QDots. Most previous reports of FRET mechanisms were concerned with QDots which emit in the visible range, such as CdTe and CdSe QDots. The NIR spectral range, for instance, promotes interesting applications in photonic crystals, where FRET can be enhanced by spontaneous emission inhibition, in photovoltaics, in order to greatly absorb infrared light, and in the production of near-infrared QDot lasers. In order to find evidences of the presence of the FRET mechanism, emission spectra and time-resolved measurements, using the time correlated single photon counting technique (TCSPC), of cross-linked colloidal PbS QDot solutions have been performed and will be shown in this master thesis. Along with the experimental results, a study of statistical moments of the PbS quantum dot photoluminescence kinetics will be presented in this thesis, which experimental kinetics were acquired with TCSPC. With this statistical analysis, it is possible to evaluate and compare various decay properties, such as the average decay time, the mean-squared value of the decay and the measure of asymmetry of the time-resolved distribution. In order to understand the obtained results, some donor decay models were developed and studied, alongside with other decay functions found in the literature. A theoretical description of the FRET mechanism will be presented in order to understand the proposed decay models.
A transferência ressonante de energia de Förster (em inglês, Förster resonance energy transfer, ou, simplesmente, FRET) é um mecanismo de transferência de energia não radiativo presente entre duas unidades fluorescentes, como dois pontos quânticos ou duas moléculas. Neste mecanismo, um dador excitado (por exemplo, um ponto quântico ou uma molécula) transfere a sua energia de excitação para um aceitador (outro ponto quântico ou molécula) com o qual se encontre em ressonância, por acoplamento dipolo-dipolo. O FRET é um mecanismo dominante entre emissores distanciados entre si a uma ordem dos nanómetros. Outros fatores dominantes que influenciam a eficiência deste mecanismo de transferência são a sobreposição do espetro de emissão do dador com o espetro de absorção do aceitador e a orientação relativa do momento dipolar de ambas as partículas. Este mecanismo tem também um papel fundamental em processos biológicos como a fotossíntese em plantas e bactérias. Algumas aplicações de FRET podem ser encontradas em sistemas fotovoltaicos, na análise de distâncias e interações moleculares, e no armazenamento de informação quântica. O objetivo principal desta tese de mestrado é a deteção do mecanismo de FRET numa mistura coloidal de duas amostras pontos quânticos de PbS (símbolo químico para Galena, ou sulfeto de chumbo) com diferentes tamanhos, que são unidas por processos de química de superfícies. Estes processos químicos promovem, neste caso específico, ligações cruzadas físicas entre dois, ou mais, pontos quânticos, a uma distância da ordem dos nanómetros, que promove a presença de FRET. A deteção de FRET em sistemas de pontos quânticos que emitem no espetro infravermelho próximo (isto é, com comprimentos de onda entre 0.7 􀀀 1.4mm), como os pontos quânticos de PbS, não é amplamente encontrada na literatura, a qual foca na deteção de mecanismos de FRET em pontos quânticos que emitem no espetro visível, como pontos quânticos de CdTe ou CdSe. O espetro infravermelho próximo permite, como exemplo, aplicações em cristais fotónicos, aonde o mecanismo de FRET é predominante pela inibição da emissão radiativa espontânea, assim como a aplicação em lasers que emitem no infravermelho e absorção de luz no infravermelho em sistemas fotovoltaicos. De forma a detetar a presença de FRET nas amostras de pontos quânticos, foram medidos espetros de emissão e cinéticas fotoluminescentes, estas obtidas por técnicas de resolução temporal de fotoluminescência como TCSPC (em inglês, Time Correlated Single Photon Counting). Em conjunto com os resultados experimentais obtidos, é apresentado nesta tese o estudo estatístico das cinéticas fotoluminescentes das amostras de pontos quânticos PbS, cujas cinéticas foram obtidas pela técnica de TCSPC. A partir desta análise estatística, é possível de avaliar e comparar várias propriedades das cinéticas, tais como o tempo médio de decaimento, o erro quadrático médio e a medida da assimetria da cinética obtida. De forma a compreender os resultados obtidos, alguns modelos de decaimentos do dador foram desenvolvidos e estudados, em conjunto com outras funções de decaimento que são encontradas na literatura. De forma a sustentar os modelos teóricos de decaimento, é também apresentado um tratamento teórico do mecanismo de FRET.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Moquin, Alexandre. „Points quantiques : caractérisation et applications en sciences pharmaceutiques“. Thèse, 2014. http://hdl.handle.net/1866/11758.

Der volle Inhalt der Quelle
Annotation:
L’imagerie médicale a longtemps été limitée à cause des performances médiocres des fluorophores organiques. Récemment la recherche sur les nanocristaux semi-conducteurs a grandement contribué à l’élargissement de la gamme d’applications de la luminescence dans les domaines de l’imagerie et du diagnostic. Les points quantiques (QDs) sont des nanocristaux de taille similaire aux protéines (2-10 nm) dont la longueur d’onde d’émission dépend de leur taille et de leur composition. Le fait que leur surface peut être fonctionnalisée facilement avec des biomolécules rend leur application particulièrement attrayante dans le milieu biologique. Des QDs de structure « coeur-coquille » ont été synthétisés selon nos besoins en longueur d’onde d’émission. Dans un premier article nous avons modifié la surface des QDs avec des petites molécules bi-fonctionnelles portant des groupes amines, carboxyles ou zwitterions. L’effet de la charge a été analysé sur le mode d’entrée des QDs dans deux types cellulaires. À l’aide d’inhibiteurs pharmacologiques spécifiques à certains modes d’internalisation, nous avons déterminé le mode d’internalisation prédominant. L’endocytose par les radeaux lipidiques représente le mode d’entrée le plus employé pour ces QDs de tailles similaires. D’autres modes participent également, mais à des degrés moindres. Des disparités dans les modes d’entrée ont été observées selon le ligand de surface. Nous avons ensuite analysé l’effet de l’agglomération de différents QDs sur leur internalisation dans des cellules microgliales. La caractérisation des agglomérats dans le milieu de culture cellulaire a été faite par la technique de fractionnement par couplage flux-force (AF4) associé à un détecteur de diffusion de la lumière. En fonction du ligand de surface et de la présence ou non de protéines du sérum, chacun des types de QDs se sont agglomérés de façon différente. À l'aide d’inhibiteur des modes d’internalisation, nous avons corrélé les données de tailles d’agglomérats avec leur mode d’entrée cellulaire. Les cellules microgliales sont les cellules immunitaires du système nerveux central (CNS). Elles répondent aux blessures ou à la présence d’inflammagènes en relâchant des cytokines pro-inflammatoires. Une inflammation non contrôlée du CNS peut conduire à la neurodégénérescence neuronale et est souvent observée dans les cas de maladies chroniques. Nous nous sommes intéressés au développement d’un nanosenseur pour mesurer des biomarqueurs du début de l’inflammation. Les méthodes classiques pour étudier l’inflammation consistent à mesurer le niveau de protéines ou molécules relâchées par les cellules stressées (par exemple monoxyde d’azote, IL-1β). Bien que précises, ces méthodes ne mesurent qu’indirectement l’activité de la caspase-1, responsable de la libération du l’IL-1β. De plus ces méthode ne peuvent pas être utilisées avec des cellules vivantes. Nous avons construit un nanosenseur basé sur le FRET entre un QD et un fluorophore organique reliés entre eux par un peptide qui est spécifiquement clivé par la caspase-1. Pour induire l’inflammation, nous avons utilisé des molécules de lipopolysaccharides (LPS). La molécule de LPS est amphiphile. Dans l’eau le LPS forme des nanoparticules, avec des régions hydrophobes à l’intérieure. Nous avons incorporé des QDs dans ces régions ce qui nous a permis de suivre le cheminement du LPS dans les cellules microgliales. Les LPS-QDs sont internalisés spécifiquement par les récepteurs TLR-4 à la surface des microglies. Le nanosenseur s’est montré fonctionnel dans la détermination de l’activité de la caspase-1 dans cellules microgliales activées par le LPS. Éventuellement, le senseur permettrait d’observer en temps réel l’effet de thérapies ciblant l’inflammation, sur l’activité de la caspase-1.
Medical imaging based on fluorescence has suffered from the poor photostability and mediocre performance of organic fluorophores. The discovery and subsequent improvements in nanocrystal synthesis and functionalization has greatly benefited the applications in medical imaging and the development of nanocrystal-based sensors for diagnostics. QDs are semi-conductor nanocrystals which have similar sizes as proteins (2-10 nm). They are highly luminescent, and can be made to emit at any desired wavelength by varying their size and composition. The surface of QDs can be easily functionalized with biomolecules. Hence, it is interesting to study how QDs interact in the biological world. Highly luminescent core-shell QDs emitting at different wavelengths were prepared according to our needs. In a first study, the surface of the QDs was modified with various small bi-functional thiolated ligands (carboxylated, aminated and zwitterionic). The modified-QDs of nearly identical sizes were administered in vitro to study the impact of surface charge and cell type on the mode and extent of cell uptake and elimination. Using specific inhibitors of cell uptake we determined which modes contributed to the internalization of the QDs. Endocytosis mediated by lipid rafts represented the predominant pathway for the internalization of QDs. However, other modes contributed to a lesser degree, depending on the surface ligand. We then analyzed the effect of QD agglomeration in cell culture media on its cellular uptake by microglia. Thorough characterization of QD agglomerate size distribution was conducted by asymmetrical flow field-flow fractionation (AF4) with a dynamic light scattering detector. Depending on the type of surface ligand and if serum proteins were present, the agglomeration pattern of the QDs was significantly different. With inhibitors of specific modes of cell uptake, we showed that the size distribution data, obtained by AF4, correlated with the modes of cell uptake. Microglia cells are immune cells of the central nervous system (CNS). They respond to injury or the presence of inflammagens by producing pro-inflammatory cytokine. Inflammation in the CNS may lead to loss of neurons, and can found in many chronic diseases. We were interested in building nanosensors to measure the onset of inflammation. Current methods to study inflammation consist in measuring levels of certain proteins or chemicals released by stressed cell (e.g. Western blot or ELISA assay for IL-1β). Although precise, these methods measure indirectly the activity of the enzyme responsible for releasing IL-1β, i.e. caspase-1. Moreover, these methods cannot be applied to live cells. We designed a sensor based on FRET between a QD and a dye linked by a peptide specifically cleaved by the caspase-1. To induce inflammation, we applied lipopolysaccharides (LPS), which are endotoxins present in Gram negative bacteria responsible for sceptic shock. The LPS form nanoparticles due to their amphiphilicity. The interior hydrophobic regions were used to load hydrophobic QDs, making the LPS luminescent. The microglia internalized LPS-QD predominantly through TLR-4 membrane receptors. We describe how the LPS induce inflammation and demonstrated the functionality of the QD-based sensor. Eventually, the sensor could be used to monitor in real time the action of therapeutics against inflammation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Tauchnitz, Tina. „Novel Methods for Controlled Self-Catalyzed Growth of GaAs Nanowires and GaAs/AlxGa1-xAs Axial Nanowire Heterostructures on Si Substrates by Molecular Beam Epitaxy“. 2019. https://tud.qucosa.de/id/qucosa%3A38708.

Der volle Inhalt der Quelle
Annotation:
GaAs-based nanowires are attractive building blocks for the development of future (opto)electronic devices owing to their excellent intrinsic material properties, such as the direct band gap and high electron mobility. A pre-requisite for the implementation of novel functionalities on a single Si chip is the monolithic integration of the nanowires on the well-established Si complementary-metal-oxide-semiconductor (CMOS) platform with precise control of the nanowire growth process. The self-catalyzed (Ga-assisted) growth of GaAs nanowires on Si(111) substrates using molecular beam epitaxy has offered the possibility to obtain vertical nanowires with predominant zinc blende structure, while potential contamination by external catalysts like Au is eliminated. Although the growth mechanism is fairly well understood, control of the nucleation stage, the nanowire number density and the crystal structure has been proven rather challenging. Moreover, conventional growth processes are typically performed at relatively high substrate temperatures in the range of 560-630 °C, which limit their application to the industrial Si platform. This thesis provides two original methods in order to tackle the aforementioned challenges in the conventional growth processes. In the first part of this thesis, a simple surface modification procedure (SMP) for the in situ preparation of native-SiOx/Si(111) substrates has been developed. Using a pre-growth treatment of the substrates with Ga droplets and two annealing cycles, the SMP enables highly synchronized nucleation of all nanowires on their substrate and thus, the growth of exceptionally uniform GaAs nanowire ensembles with sub-Poissonian length distributions. Moreover, the nanowire number density can be tuned within three orders of magnitude and independent of the nanowire dimensions without prior ex situ patterning of the substrate. This work delivers a fundamental understanding of the nucleation kinetics of Ga droplets on native-SiOx and their interaction with SiOx, and confirms theoretical predictions about the so-called nucleation antibunching, the temporal anti-correlation of consecutive nucleation events. In the second part of this thesis, an alternative method called droplet-confined alternate-pulsed epitaxy (DCAPE) for the self-catalyzed growth of GaAs nanowires and GaAs/AlxGa1-xAs axial nanowire heterostructures has been developed. DCAPE enables nanowire growth at unconventional, low temperatures in the range of 450-550 °C and is compatible with the standard Si-CMOS platform. The novel growth approach allows one to precisely control the crystal structure of the nanowires and, thus, to produce defect-free pure zinc blende GaAs-based nanowires. The strength of DCAPE is further highlighted by the controlled growth of GaAs/AlxGa1-xAs axial quantum well nanowires with abrupt interfaces and tunable thickness and Al-content of the AlxGa1-xAs sections. The GaAs/AlxGa1-xAs axial nanowire heterostructures are interesting for applications as single photon emitters with tunable emission wavelength, when they are overgrown with thick lattice-mismatched InxAl1-xAs layers in a core-shell fashion. All results presented in this thesis contribute to paving the way for a successful monolithic integration of highly uniform GaAs-based nanowires with controlled number density, dimensions and crystal structure on the mature Si platform.
GaAs-basierte Nanodrähte sind attraktive Bausteine für die Entwicklung von zukünftigen (opto)elektronischen Bauelementen dank ihrer exzellenten intrinsischen Materialeigenschaften wie zum Beispiel die direkte Bandlücke und die hohe Elektronenbeweglichkeit. Eine Voraussetzung für die Realisierung neuer Funktionalitäten auf einem einzelnen Si Chip ist die monolithische Integration der Nanodrähte auf der etablierten Si-Metall-Oxid-Halbleiter-Plattform (CMOS) mit präziser Kontrolle des Wachstumsprozesses der Nanodrähte. Das selbstkatalytische (Ga-unterstützte) Wachstum von GaAs Nanodrähten auf Si(111)-Substrat mittels Molekularstrahlepitaxie bietet die Möglichkeit vertikale Nanodrähte mit vorwiegend Zinkblende-Struktur herzustellen, während die potentielle Verunreinigung der Nanodrähte und des Substrats durch externe Katalysatoren wie Au vermieden wird. Obwohl der Wachstumsmechanismus gut verstanden ist, erweist sich die Kontrolle der Nukleationsphase, Anzahldichte und Kristallstruktur der Nanodrähte als sehr schwierig. Darüber hinaus sind relativ hohe Temperaturen im Bereich von 560-630 °C in konventionellen Wachstumsprozessen notwendig, die deren Anwendung auf der industriellen Si Plattform begrenzen. Die vorliegende Arbeit liefert zwei originelle Methoden um die bestehenden Herausforderungen in konventionellen Wachstumsprozessen zu bewältigen. Im ersten Teil dieser Arbeit wurde eine einfache Prozedur, bezeichnet als surface modification procedure (SMP), für die in situ Vorbehandlung von nativem-SiOx/Si(111)-Substrat entwickelt. Die Substratvorbehandlung mit Ga-Tröpfchen und zwei Hochtemperaturschritten vor dem Wachstumsprozess ermöglicht eine synchronisierte Nukleation aller Nanodrähte auf ihrem Substrat und folglich das Wachstum von sehr gleichförmigen GaAs Nanodraht-Ensembles mit einer sub-Poisson Verteilung der Nanodrahtlängen. Des Weiteren kann die Anzahldichte der Nanodrähte unabhängig von deren Abmessungen und ohne ex situ Vorstrukturierung des Substrats über drei Größenordnungen eingestellt werden. Diese Arbeit liefert außerdem ein grundlegendes Verständnis zur Nukleationskinetik von Ga-Tröpfchen auf nativem-SiOx und deren Wechselwirkung mit SiOx und bestätigt theoretische Voraussagen zum sogenannten Nukleations-Antibunching, dem Auftreten einer zeitlichen Anti-Korrelation aufeinanderfolgender Nukleationsereignisse. Im zweiten Teil dieser Arbeit wurde eine alternative Methode, bezeichnet als droplet-confined alternate-pulsed epitaxy (DCAPE), für das selbstkatalytische Wachstum von GaAs Nanodrähten und GaAs/AlxGa1-xAs axialen Nanodraht-Heterostrukturen entwickelt. DCAPE ermöglicht das Nanodrahtwachstum bei unkonventionell geringeren Temperaturen im Bereich von 450-550 °C und ist vollständig kompatibel mit der Standard-Si-CMOS-Plattform. Der neue Wachstumsansatz erlaubt eine präzise Kontrolle der Kristallstruktur der Nanodrähte und folglich das Wachstum von defektfreien Nanodrähten mit phasenreiner Zinkblende-Struktur. Die Stärke der DCAPE Methode wird des Weiteren durch das kontrollierte Wachstum von GaAs/AlxGa1-xAs axialen Quantentopf-Nanodrähten mit abrupten Grenzflächen und einstellbarer Dicke und Al-Anteil der AlxGa1-xAs-Segmente aufgezeigt. Die GaAs/AlxGa1-xAs axialen Nanodraht-Heterostrukturen sind interessant für den Einsatz als Einzelphotonen-Emitter mit einstellbarer Emissionswellenlänge, wenn diese mit gitterfehlangepassten InxAl1-xAs-Schichten in einer Kern-Hülle-Konfiguration überwachsen werden. Alle Ergebnisse dieser Arbeit tragen dazu bei, den Weg für eine erfolgreiche monolithische Integration von sehr gleichförmigen GaAs-basierten Nanodrähten mit kontrollierbarer Anzahldichte, Abmessungen und Kristallstruktur auf der industriell etablierten Si-Plattform zu ebnen.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie