Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Quantum Dots (QD)“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Quantum Dots (QD)" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Quantum Dots (QD)"
Prevenslik, Thomas. „Quantum Dots by QED“. Advanced Materials Research 31 (November 2007): 1–3. http://dx.doi.org/10.4028/www.scientific.net/amr.31.1.
Der volle Inhalt der QuelleHan, Chang-Yeol, Hyun-Sik Kim und Heesun Yang. „Quantum Dots and Applications“. Materials 13, Nr. 4 (18.02.2020): 897. http://dx.doi.org/10.3390/ma13040897.
Der volle Inhalt der QuelleLobnik, Aleksandra, Špela Korent Urek und Matejka Turel. „Quantum Dots Based Optical Sensors“. Defect and Diffusion Forum 326-328 (April 2012): 682–89. http://dx.doi.org/10.4028/www.scientific.net/ddf.326-328.682.
Der volle Inhalt der QuelleGhazi, Haddou EL. „Analysis of Quantum Dot Uses for Drug Delivery: Opportunities and Challenges“. Nanomedicine & Nanotechnology Open Access 9, Nr. 2 (2024): 1–3. http://dx.doi.org/10.23880/nnoa-16000302.
Der volle Inhalt der QuelleLedentsov, Nikolai N., Victor M. Ustinov, Dieter Bimberg, James A. Lott und Zh I. Alferov. „APPLICATIONS OF QUANTUM DOTS IN SEMICONDUCTOR LASERS“. International Journal of High Speed Electronics and Systems 12, Nr. 01 (März 2002): 177–205. http://dx.doi.org/10.1142/s0129156402001150.
Der volle Inhalt der QuelleGajjela, Raja S. R., und Paul M. Koenraad. „Atomic-Scale Characterization of Droplet Epitaxy Quantum Dots“. Nanomaterials 11, Nr. 1 (03.01.2021): 85. http://dx.doi.org/10.3390/nano11010085.
Der volle Inhalt der QuelleLee, Changmin, Eunhee Nam, Woosuk Lee und Heeyeop Chae. „Hydrosilylation of Reactive Quantum Dots and Siloxanes for Stable Quantum Dot Films“. Polymers 11, Nr. 5 (18.05.2019): 905. http://dx.doi.org/10.3390/polym11050905.
Der volle Inhalt der QuelleZhang, Liyao, Yuxin Song, Qimiao Chen, Zhongyunshen Zhu und Shumin Wang. „InPBi Quantum Dots for Super-Luminescence Diodes“. Nanomaterials 8, Nr. 9 (10.09.2018): 705. http://dx.doi.org/10.3390/nano8090705.
Der volle Inhalt der QuelleJacak, L., J. Krasnyj, D. Jacak, R. Gonczarek, M. Krzyżosiak und P. Machnikowski. „Spin-Based Quantum Information Processing in Magnetic Quantum Dots“. Open Systems & Information Dynamics 12, Nr. 02 (Juni 2005): 133–41. http://dx.doi.org/10.1007/s11080-005-5724-0.
Der volle Inhalt der QuelleSilva Filho, José Maria C. da, Victor A. Ermakov, Luiz G. Bonato, Ana F. Nogueira und Francisco C. Marques. „Self-Organized Lead(II) Sulfide Quantum Dots Superlattice“. MRS Advances 2, Nr. 15 (2017): 841–46. http://dx.doi.org/10.1557/adv.2017.246.
Der volle Inhalt der QuelleDissertationen zum Thema "Quantum Dots (QD)"
Reinhart, Chase Collier. „Formulation of Colloidal Suspensions of 3-mercaptopropionic acid capped PbS Quantum Dots as Solution Processable QD "Inks" for Optoelectronic Applications“. PDXScholar, 2016. http://pdxscholar.library.pdx.edu/open_access_etds/3289.
Der volle Inhalt der QuelleStubbs, Stuart Kenneth. „Photo-physics and applications of colloidal quantum dots“. Thesis, University of Manchester, 2010. https://www.research.manchester.ac.uk/portal/en/theses/photophysics-and-applications-of-colloidal-quantum-dots(2391c0ce-b086-47a8-8600-a833657f85bc).html.
Der volle Inhalt der QuelleKethineedi, Venkata Ramana. „Synthesis and Applications of Luminescent Quantum Dots in Bioassays“. ScholarWorks@UNO, 2011. http://scholarworks.uno.edu/td/1416.
Der volle Inhalt der QuelleDrillat, François. „Encapsulation de Quantum Dots dans des copolymères blocs : formation de structures supramoléculaires organisées et utilisation en biologie comme nouveau marqueur fluorescent“. Phd thesis, Université Pierre et Marie Curie - Paris VI, 2008. http://tel.archives-ouvertes.fr/tel-00812058.
Der volle Inhalt der QuelleJames, Daniel. „Fabrication and electrical characterisation of quantum dots : uniform size distributions and the observation of unusual electrical characteristics and metastability“. Thesis, University of Manchester, 2010. https://www.research.manchester.ac.uk/portal/en/theses/fabrication-and-electrical-characterisation-of-quantum-dots-uniform-size-distributions-and-the-observation-of-unusual-electrical-characteristics-and-metastability(01bb9182-5290-4ad1-b6a4-3aed3970dbcf).html.
Der volle Inhalt der QuelleXiaohong, Tang, und Yin Zongyou. „MOCVD Growths of the InAs QD Structures for Mid-IR Emissions“. Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35383.
Der volle Inhalt der QuelleYe, Xinying. „SEMI-AUTOMATIC AND INTERACTIVE VISUALIZATION OF QUANTUM DOT NANO-STRUCTURES“. University of Akron / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=akron1195496291.
Der volle Inhalt der QuelleGuellil, Imene. „Nano-fonctionnalisation par FIB haute résolution de silicium“. Electronic Thesis or Diss., Aix-Marseille, 2022. http://www.theses.fr/2022AIXM0361.
Der volle Inhalt der QuelleThe goal of this work is to develop a process for the elaboration of silicon-germanium (SiGe) quantum dots (QDs) with compositions ranging from Si to pure Ge, and allowing to obtain semiconducting QDs with sufficiently small sizes to obtain quantum confinement. For this purpose, we have used a combination of different techniques: molecular beam epitaxy, focused ion beam lithography (FIBL) and heterogeneous solid state dewetting. In this context, the aim of this research is on the one hand to develop a new FIB that can be coupled to the ultra-high vacuum molecular beam epitaxy growth chamber, and on the other hand to realize two applications: (i) nanopatterns for the self-organisation of Si and Ge QDs and (ii) nano-implantations of Si and Ge. We used FIBL with energy-filtered liquid metal alloy ion sources (LMAIS) using non-polluting ions (Si and Ge) for the milling of conventional microelectronic substrates such as SiGe on silicon-on-insulator (SGOI). The nanopatterns must be totally free of pollution and with variable and perfectly controlled characteristics (size, density, depth). The morphology of the nanopatterns is then characterized in-situ by scanning electron microscopy (SEM), and the depth is determined ex-situ by atomic force microscopy (AFM). The nanopatterns made by FIBL were compared on the one hand to plasma etchings with He and Ne and on the other hand to the etchings obtained by electronic lithography (EBL). Nanoimplantations of Si and Ge ions were realised in diamond and in ultra-thin SGOI for the fabrication of local defects
Pereira, Geovane Módena. „Criptografia de qubits de férmions de Majorana por meio de estados ligados no contínuo“. Universidade Estadual Paulista (UNESP), 2017. http://hdl.handle.net/11449/152724.
Der volle Inhalt der QuelleApproved for entry into archive by Ana Paula Santulo Custódio de Medeiros null (asantulo@rc.unesp.br) on 2018-02-14T16:11:32Z (GMT) No. of bitstreams: 1 pereira_gm_me_rcla.pdf: 7420427 bytes, checksum: 0a0aec5beec2ecdd26883e0f4524844f (MD5)
Made available in DSpace on 2018-02-14T16:11:32Z (GMT). No. of bitstreams: 1 pereira_gm_me_rcla.pdf: 7420427 bytes, checksum: 0a0aec5beec2ecdd26883e0f4524844f (MD5) Previous issue date: 2017-12-01
Nós investigamos teoricamente uma cadeia topológica de Kitaev conectada a dois pontos quânticos (QDs) hibridizados a terminais metálicos. Neste sistema, observamos o surgimento de dois fenômenos marcantes: (i) uma decriptografia do Férmion de Majorana (MF), que é detectado por meio de medições de condutância devido ao estado de vazamento assimétrico do qubit de MFs nos QDs; (ii) criptografia desse qubit em ambos os QDs quando o vazamento é simétrico. Em tal regime, temos portanto a criptografia proposta, uma vez que o qubit de MFs separa-se nos QDs como estados ligados no contínuo (BICs), os quais não são detectáveis em experimentos de condutância.
We theoretically investigate a topological Kitaev chain connected to a double quantum-dot (QD) setup hybridized with metallic leads. In this system, we observe the emergence of two striking phenomena: i) a decrypted Majorana Fermion (MF) - qubit recorded over a single QD, which is detectable by means of conductance measurements due to the asymmetrical MF-leaked state into the QDs; ii) an encrypted qubit recorded in both QDs when the leakage is symmetrical. In such a regime, we have a cryptography-like manifestation, since the MF-qubit becomes bound states in the continuum, which is not detectable in conductance experiments.
Bain, Fiona Mair. „Yb:tungstate waveguide lasers“. Thesis, University of St Andrews, 2010. http://hdl.handle.net/10023/1698.
Der volle Inhalt der QuelleBücher zum Thema "Quantum Dots (QD)"
Zrazhevskiy, P., und X. Gao. Bioconjugated quantum dots for tumor molecular imaging and profiling. Herausgegeben von A. V. Narlikar und Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533060.013.17.
Der volle Inhalt der QuelleMelnikov, D. V., J. Kim, L. X. Zhang und J. P. Leburton. Few-electron quantum-dot spintronics. Herausgegeben von A. V. Narlikar und Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533060.013.2.
Der volle Inhalt der QuelleGrove-Rasmussen, K. Hybrid Superconducting Devices Based on Quantum Wires. Herausgegeben von A. V. Narlikar. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780198738169.013.16.
Der volle Inhalt der QuelleBuchteile zum Thema "Quantum Dots (QD)"
Hashimoto, Masanori, Takuto Matsumoto, Masafumi Tanaka, Ryo Shirai, Naoya Tate, Masaki Nakagawa, Takashi Tokuda, Kiyotaka Sasagawa, Jun Ohta und Jaehoon Yu. „Exploring Integrated Device Implementation for FRET-Based Optical Reservoir Computing“. In Photonic Neural Networks with Spatiotemporal Dynamics, 89–108. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-5072-0_5.
Der volle Inhalt der QuelleNiveria, Karishma, Priyanka Singh, Monika Yadav und Anita K. Verma. „Quantum Dot (QD)-Induced Toxicity and Biocompatibility“. In Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors, 181–211. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-19531-0_8.
Der volle Inhalt der QuelleRöhm, André. „Modes of Operation of QD Lasers“. In Dynamic Scenarios in Two-State Quantum Dot Lasers, 28–36. Wiesbaden: Springer Fachmedien Wiesbaden, 2015. http://dx.doi.org/10.1007/978-3-658-09402-7_3.
Der volle Inhalt der QuelleRöhm, André. „Understanding QD Laser Regimes of Operation“. In Dynamic Scenarios in Two-State Quantum Dot Lasers, 37–59. Wiesbaden: Springer Fachmedien Wiesbaden, 2015. http://dx.doi.org/10.1007/978-3-658-09402-7_4.
Der volle Inhalt der QuelleBreuer, Stefan, Dimitris Syvridis und Edik U. Rafailov. „Ultra-Short-Pulse QD Edge-Emitting Lasers“. In The Physics and Engineering of Compact Quantum Dot-based Lasers for Biophotonics, 43–94. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527665587.ch2.
Der volle Inhalt der QuelleSengupta, Saumya, und Subhananda Chakrabarti. „Structural and Optical Characterization of Bilayer QD Heterostructures“. In Structural, Optical and Spectral Behaviour of InAs-based Quantum Dot Heterostructures, 25–42. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5702-1_3.
Der volle Inhalt der QuelleLange, Alexander, und Armin Wedel. „Organic Light-Emitting Diode (OLED) and Quantum Dot (QD) Inks and Application“. In Handbook of Industrial Inkjet Printing, 225–38. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527687169.ch12.
Der volle Inhalt der QuelleLoza-Alvarez, Pablo, Rodrigo Avilés-Espinosa, Steve J. Matcher, D. Childs und Sergei G. Sokolovski. „QD Ultrafast and Continuous Wavelength Laser Diodes for Applications in Biology and Medicine“. In The Physics and Engineering of Compact Quantum Dot-based Lasers for Biophotonics, 171–230. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527665587.ch5.
Der volle Inhalt der QuelleSamukawa, Seiji. „Fabrication of 3D Quantum Dot Array by Fusion of Biotemplate and Neutral Beam Etching II: Application to QD Solar Cells and Laser/LED“. In Intelligent Nanosystems for Energy, Information and Biological Technologies, 169–92. Tokyo: Springer Japan, 2016. http://dx.doi.org/10.1007/978-4-431-56429-4_10.
Der volle Inhalt der QuelleGonzález De la Cruz, Gerardo, Lourdes Rodríguez-Fragoso, Patricia Rodríguez-Fragoso und Anahi Rodríguez-López. „Toxicity of Quantum Dots“. In Toxicity of Nanoparticles - Recent Advances and New Perspectives. IntechOpen, 2024. http://dx.doi.org/10.5772/intechopen.112073.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Quantum Dots (QD)"
Nishi, Kenichi, Hideaki Saito und Shigeo Sugou. „Vertical cavity surface emitting laser with self-assembled quantum dots“. In Quantum Optoelectronics. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/qo.1997.qwa.2.
Der volle Inhalt der QuelleMalinowski, Pawel, David Cheyns, Vladimir Pejovic, Luis Moreno Hagelsieb, Griet Uytterhoeven, Jiwon Lee, Epimitheas Georgitzikis et al. „High image quality QD image sensors for the SWIR range“. In Internet Conference for Quantum Dots. València: Fundació Scito, 2020. http://dx.doi.org/10.29363/nanoge.icqd.2020.034.
Der volle Inhalt der QuelleSandmann, J. H. H., S. Grosse, J. Feldmann, H. Lipsanen, M. Sopanen, J. Tulkki und J. Ahopelto. „Carrier Relaxation and Recombination Dynamics in InGaAs/GaAs quantum dots“. In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/up.1996.thb.3.
Der volle Inhalt der QuelleM. Cossairt, Brandi. „QD Nucleation and Growth – Beyond Classical Mechanisms“. In Online school on Fundamentals of Semiconductive Quantum Dots. València: Fundació Scito, 2021. http://dx.doi.org/10.29363/nanoge.qdsschool.2021.005.
Der volle Inhalt der QuelleLoi, Maria Antonietta. „QD solar cells: past, present and future“. In Online school on Fundamentals of Semiconductive Quantum Dots. València: Fundació Scito, 2021. http://dx.doi.org/10.29363/nanoge.qdsschool.2021.011.
Der volle Inhalt der QuelleElsinger, Lukas, Dries Van Thourhout, Iman E. Zadeh, Jorick Maes, Antonio Guardiani, Ronan Gourgues, Silvania F. Pereira et al. „Plasmonic Enhancement and Spectroscopy of PbS/CdS QD Emitters on a Silicon Nitride Photonic Platform“. In Internet Conference for Quantum Dots. València: Fundació Scito, 2020. http://dx.doi.org/10.29363/nanoge.icqd.2020.103.
Der volle Inhalt der QuelleOnal, Asim, Guncem Ozgun Eren, Sadra Sadeghi, Rustamzhon Melikov, Mertcan Han, Onuralp Karatum, Melek Sermin Ozer et al. „Highly Efficient White LEDs by Using Near Unity Emitting Colloidal Quantum Dots in Liquid Medium“. In Novel Optical Materials and Applications. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/noma.2022.now4d.1.
Der volle Inhalt der QuelleDongre, Suryansh, Debi Prasad Panda, Sanowar Alam Gazi, Debabrata Das, Ravinder Kumar, Abhishek Kumar, Nivedita Pandey und Subhananda Chakrabarti. „Optimization of strain-coupled InAs QD layers in P-i-P infrared photodetector heterostructures“. In Quantum Dots, Nanostructures, and Quantum Materials: Growth, Characterization, and Modeling XVII, herausgegeben von Diana L. Huffaker und Holger Eisele. SPIE, 2020. http://dx.doi.org/10.1117/12.2542565.
Der volle Inhalt der QuelleOzkan, Cengiz S. „Assembly at the Nanoscale: Heterojunctions of Carbon Nanotubes and Nanocrystals (Keynote)“. In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-82363.
Der volle Inhalt der QuelleOzkan, Cengiz S. „Assembly at the Nanoscale: Towards Functional Nanostructured Materials (Invited)“. In ASME 2006 Multifunctional Nanocomposites International Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/mn2006-17078.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Quantum Dots (QD)"
Lagally, Max. Quantum Dots on Silicon-on-Insulator (QD/SOI): Nanoscale Strain and Band Structure Engineering. Office of Scientific and Technical Information (OSTI), September 2023. http://dx.doi.org/10.2172/2004654.
Der volle Inhalt der QuelleReinhart, Chase. Formulation of Colloidal Suspensions of 3-mercaptopropionic acid capped PbS Quantum Dots as Solution Processable QD "Inks" for Optoelectronic Applications. Portland State University Library, Januar 2000. http://dx.doi.org/10.15760/etd.3280.
Der volle Inhalt der Quelle