Auswahl der wissenschaftlichen Literatur zum Thema „Quantum chromodynamics“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Quantum chromodynamics" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Quantum chromodynamics":

1

't Hooft, G. „Quantum chromodynamics“. Annalen der Physik 512, Nr. 11-12 (November 2000): 925–26. http://dx.doi.org/10.1002/andp.200051211-1210.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Llewellyn Smith, C. H. „Quantum chromodynamics“. Contemporary Physics 29, Nr. 4 (Juli 1988): 407–9. http://dx.doi.org/10.1080/00107518808213767.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

't Hooft, G. „Quantum chromodynamics“. Annalen der Physik 9, Nr. 11-12 (November 2000): 925–26. http://dx.doi.org/10.1002/1521-3889(200011)9:11/12<925::aid-andp925>3.0.co;2-s.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Cahill, RT. „On the Importance of Self-interaction in QCD“. Australian Journal of Physics 44, Nr. 3 (1991): 105. http://dx.doi.org/10.1071/ph910105.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The electromagnetic self-energy of charged particles has remained a problem in classical as well as in quantum electrodynamics. In contrast here, in a review of the analysis of the chromodynamic self-energy of quarks in quantum chromodynamics (QCD), we see that the quark self-energy is a finite and a dominant effect in determining the structure of hadrons.
5

Chanyal, B. C., P. S. Bisht, Tianjun Li und O. P. S. Negi. „Octonion Quantum Chromodynamics“. International Journal of Theoretical Physics 51, Nr. 11 (15.06.2012): 3410–22. http://dx.doi.org/10.1007/s10773-012-1222-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Ioffe, B. L. „Condensates in quantum chromodynamics“. Physics of Atomic Nuclei 66, Nr. 1 (Januar 2003): 30–43. http://dx.doi.org/10.1134/1.1540654.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

BROWER, RICHARD C., YUE SHEN und CHUNG-I. TAN. „CHIRALLY EXTENDED QUANTUM CHROMODYNAMICS“. International Journal of Modern Physics C 06, Nr. 05 (Oktober 1995): 725–42. http://dx.doi.org/10.1142/s0129183195000599.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
We propose an extended Quantum Chromodynamics (XQCD) Lagrangian in which the fermions are coupled to elementary scalar fields through a Yukawa coupling which preserves chiral invariance. Our principle motivation is to find a new lattice formulation for QCD which avoids the source of critical slowing down usually encountered as the bare quark mass is tuned to the chiral limit. The phase diagram and the weak coupling limit for XQCD are studied. They suggest a conjecture that the continuum limit of XQCD is the same as the continuum limit of conventional lattice formulation of QCD. As examples of such universality, we present the large N solutions of two prototype models for XQCD, in which the mass of the spurious pion and sigma resonance go to infinity with the cut-off. Even if the universality conjecture turns out to be false, we believe that XQCD will still be useful as a low energy effective action for QCD phenomenology on the lattice. Numerical simulations are recommended to further investigate the possible benefits of XQCD in extracting QCD predictions.
8

Close, Frank. „Confirmation for quantum chromodynamics“. Nature 353, Nr. 6344 (Oktober 1991): 498–99. http://dx.doi.org/10.1038/353498a0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Vranas, P., M. A. Blumrich, D. Chen, A. Gara, M. E. Giampapa, P. Heidelberger, V. Salapura, J. C. Sexton, R. Soltz und G. Bhanot. „Massively parallel quantum chromodynamics“. IBM Journal of Research and Development 52, Nr. 1.2 (Januar 2008): 189–97. http://dx.doi.org/10.1147/rd.521.0189.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Bakker, B. L. G., A. Bassetto, S. J. Brodsky, W. Broniowski, S. Dalley, T. Frederico, S. D. Głazek et al. „Light-front quantum chromodynamics“. Nuclear Physics B - Proceedings Supplements 251-252 (Juni 2014): 165–74. http://dx.doi.org/10.1016/j.nuclphysbps.2014.05.004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Quantum chromodynamics":

1

Soerensen, P. H. „Soft divergences in quantum chromodynamics“. Thesis, University of Cambridge, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.384315.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Von, Oertzen Detlof Wilhelm. „Transport coefficients in quantum chromodynamics“. Doctoral thesis, University of Cape Town, 1990. http://hdl.handle.net/11427/22057.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Relativistic kinetic theory provides a transport equation for classical, spinless, colored particles in a non-Abelian external field. We review the methods of solution used in the literature to find the transport coefficients for quark and gluon systems. Most authors use the relaxation time approximation of the Boltzmann equation to compute the transport coefficients, but this method has shortcomings in mixtures. We use the Chapman Enskog (CE) method to solve the classical transport equations for quarks and gluons for the transport coefficients. The differential crosssections describing the particle interaction are obtained from the lowest order scattering diagrams of quantum chromodynamics. We study a pure quark system, a pure gluon system and a quark antiquark (qq) mixture. For mixtures of quarks, antiquarks and gluons, we find the shear viscosity, heat conductivity and cross-coefficients. The coefficients pertaining to qq mixtures, namely the thermal diffusion, diffusion and Dufour coefficient, the viscosities and heat conductivity are obtained and the conductivity of a qq mixture in an external field is computed. We compare our transport coefficients to others in the literature by rewriting them in terms of characteristic relaxation times. Although our results are generally larger than others, they are of the same order of magnitude, with important implications for quark-gluon (QG) plasma signatures. The quark to gluon shear viscosity ratio is found to be ~5 times the number of quark flavors, emphasising the importance of quarks in dynamical QG calculations. The coefficients for a field-free qq mixture indicate no qq separation in the presence of a temperature gradient. In the CE method, the transport coefficients depend naturally on a logarithmic factor due to the divergent scattering cross-sections, reflecting the plasma shielding effects. This logarithm is evaluated by relating it to typical plasma parameters. We apply our results to the QG phase in the early universe and ultra-relativistic heavy ion collisions. A comparison of the QG to pion transport coefficients at the quark-hadron phase transition shows that the latter are ~10³ smaller. Dissipative effects increase the plasma lifetime, resulting in a longer high energy density and temperature plasma phase.
3

Tsegaye, Takele Dessie. „Confinement Mechanisms in Quantum Chromodynamics“. University of Cincinnati / OhioLINK, 2003. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1051373650.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Detmold, William. „Nonperturbative approaches to quantum chromodynamics“. Title page, contents and abstract only, 2002. http://web4.library.adelaide.edu.au/theses/09PH/09phd4817.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Peláez, Arzúa Monica Marcela. „Infrared correlation functions in Quantum Chromodynamics“. Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066491/document.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Le but de cette thèse est l'étude des fonctions de corrélation des théries Yang-Mills dans le régime infrarouge. Il est connu que, à cause de l'invariance jauge, il est nécessaire de fixer la jauge pour calculer des valeurs moyennes analytiquement. La procedure de fixation gauge standard est la procedure de Faddeev-Popov (FP). Le Lagrangien de FP permet de faire des calculs perturbatifs pour la Chromodynamique Quantique dans le régime de hautes énergies dont les résultats sont comparés avec succès avec des expériences. Cependant, dans le régime de basses énergies, il se trouve que la constante de couplage, calculée avec la procedure antérieure, diverge. En conséquence, la théorie des perturbations standard n'est plus valide. D'autre part, les simulations du réseau trouvent que la constante de couplage est finie avec une valeur modérée même dans le régime infrarouge. Ceci suggère qu'il devrait exister une manière de faire des calculs perturbatifs également dans le régime infrarouge. Cette différence dans la constante de couplage peut être due au fait que la procedure de FP n'est pas bien justifiée dans ce régime. Nous proposons de modifier le Lagrangien de FP avec un terme massif pour les gluons. Cette modification est également justifiée par le fait que le réseau trouve un propagateur du gluon qui paraît massive aux basses énergies. Nous utilisons cette version massive pour calculer à une boucle les fonctions de corrélations à deux et trois points pour une configuration cinématique générale et en dimension quelconque dans la jauge de Landau. On trouve que les comparaisons de notre calcul à une boucle avec les résultat du réseau donnent, en géneral, un très bon accord
The aim of this thesis is to investigate the infrared behaviour of Yang-Mills correlation functions. It is known that the gauge invariance of the theory brings as a consequence the necessity of a gauge fixing procedure in order to compute expectation values analytically. The standard procedure for fixing the gauge is the Faddeev-Popov (FP) procedure which allows one to do perturbation theory in the ultraviolet regime. Perturbative calculations using the FP gauge fixed action successfully reproduce Quantum Chromodynamics observables measured by experiments in the ultraviolet regime. In the infrared regime the coupling constant of the theory computed with the above procedure diverges, and standard perturbation theory does not seem to be valid. However, lattice simulations show that the coupling constant takes finite and not very large value. This suggests that some kind of perturbative calculations should be valid even in the infrared regime. The theoretical justification for the FP procedure depends on the absence of Gribov copies and hence is not valid in the infrared regime (where such copies exist). To correct this we propose to add a mass term for the gluons in the gauge-fixed Lagrangian. The gluon mass term is also motivated by lattice simulations which observe that the gluon propagator behaves as it was massive in the infrared regime. We use this massive extension of the FP gauge fixed action to compute the one loop correction of the two- and three-point correlation functions in the Landau gauge for arbitrary kinematics and dimension. Our one-loop calculations are enough, in general, to reproduce with good accuracy the lattice data available in the literature
6

Bass, Steven David. „Spin dependent effects in quantum chromodynamics /“. Title page, contents and abstract only, 1992. http://web4.library.adelaide.edu.au/theses/09PH/09phb317.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Thesis (Ph. D.)--University of Adelaide, Dept. of Physics and Mathematical Physics, 1993.
Copies of three of the author's previously published articles inserted as appendix B. Includes bibliographical references.
7

Malaza, E. D. „Jet multiplicity distributions in quantum chromodynamics“. Thesis, University of Cambridge, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.382607.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Dasgupta, M. „Power suppressed corrections in quantum chromodynamics“. Thesis, University of Cambridge, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.598295.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The purpose of the research described in this dissertation, is to establish a bridge between perturbative and non-perturbative aspects of QCD. While it is remarkable that the factorisation theorems of QCD allow one the freedom to carry out perturbative calculations in most cases of interest, it cannot be forgotten that perturbation theory can never provide a complete description of strong interaction phenomena. The factorisation theorems themselves make allowance for non-perturbative effects by parametrising them through parton distributions and fragmentation functions, which has given rise to what has become known as QCD phenomenology. In this dissertation we adopt a phenomenological approach to the study of a certain class of non-perturbative effects which are manifested in terms that behave as an inverse power of the relevant hard scale. The idea underlying our approach is to examine the ambiguity of the perturbative series and then interpret it as representing non-perturbative effects. To make quantitative estimates we adopt an approach in which our predictions depend on supposedly universal parameters that can be extracted from experiment in the same spirit as parton distributions. These parameters are the moments of the strong coupling, which is assumed infrared finite. Within this approach we can relate the power corrections to different observables, due to the universality assumption. Knowledge of these parameters can be employed to constrain the form of the strong coupling at small scales which may allow a unique glimpse into the confinement domain. In this dissertation we make unambiguous predictions for power corrections to a wide variety of observables. These include DIS structure functions, fragmentation functions in both e+e- annihilation and DIS, and event shape variables. In most cases we observe that there is good support for the predictions made here, from experimental data.
9

Daniel, David John. „Towards phenomenology from lattice quantum chromodynamics“. Thesis, University of Edinburgh, 1987. http://hdl.handle.net/1842/13558.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Sheard, Stephen Noel. „Weak interactions in lattice quantum chromodynamics“. Thesis, University of Edinburgh, 1988. http://hdl.handle.net/1842/14402.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Quantum chromodynamics":

1

Greiner, Walter. Quantum chromodynamics. 2. Aufl. Berlin: Springer, 2002.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Greiner, Walter, und Andreas Schäfer. Quantum Chromodynamics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-57978-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Greiner, Walter, Stefan Schramm und Eckart Stein. Quantum Chromodynamics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04707-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Greiner, Walter. Quantum chromodynamics. Berlin: Springer-Verlag, 1994.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Greiner, Walter. Quantum chromodynamics. 2. Aufl. Berlin: Springer-Verlag, 1995.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Greiner, Walter. Quantum chromodynamics. New York: Springer-Verlag, 1994.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Knechtli, Francesco, Michael Günther und Michael Peardon. Lattice Quantum Chromodynamics. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-0999-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

H, Mueller A., Hrsg. Perturbative quantum chromodynamics. Singapore: World Scientific, 1989.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Dominguez, Cesareo A. Quantum Chromodynamics Sum Rules. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97722-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Smilga, A. V. Lectures on quantum chromodynamics. River Edge, NJ: World Scientific, 2001.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Quantum chromodynamics":

1

Armesto, Néstor, und Carlos Pajares. „Quantum Chromodynamics“. In Springer Proceedings in Physics, 48–96. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12238-0_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Can, Kadir Utku. „Quantum Chromodynamics“. In Electromagnetic Form Factors of Charmed Baryons in Lattice QCD, 15–26. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8995-4_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Zhang, Jian-zu, Roberto Floreanini, Steven Duplij, Steven Duplij, Dmitri Gitman, Stuart Corney, Peter Jarvis, Robert Marnelius, Steven Duplij und Stephan Narison. „Quantum Chromodynamics“. In Concise Encyclopedia of Supersymmetry, 314. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-4522-0_421.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Böhm, Manfred, Ansgar Denner und Hans Joos. „Quantum Chromodynamics“. In Gauge Theories of the Strong and Electroweak Interaction, 426–565. Wiesbaden: Vieweg+Teubner Verlag, 2001. http://dx.doi.org/10.1007/978-3-322-80160-9_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Shanahan, Phiala Elisabeth. „Quantum Chromodynamics“. In Strangeness and Charge Symmetry Violation in Nucleon Structure, 5–20. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31438-9_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Fritzsch, Harald. „Quantum Chromodynamics“. In Murray Gell-Mann and the Physics of Quarks, 89–94. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92195-2_7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Smilga, Andrei. „Quantum Chromodynamics“. In Digestible Quantum Field Theory, 177–209. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59922-9_11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Mosel, Ulrich. „Quantum Chromodynamics“. In Fields, Symmetries, and Quarks, 209–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-03841-3_15.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Abbas, Syed Afsar. „Quantum Chromodynamics“. In Group Theory in Particle, Nuclear, and Hadron Physics, 203–26. Boca Raton, FL : CRC Press, Taylor & Francis Group, [2016] | ©2016: CRC Press, 2016. http://dx.doi.org/10.1201/9781315371702-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Schäfer, Thomas. „Quantum Chromodynamics“. In An Advanced Course in Computational Nuclear Physics, 5–54. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-53336-0_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Quantum chromodynamics":

1

Fried, H. M., B. Müller und Y. Gabellini. „QUANTUM CHROMODYNAMICS“. In Proceedings of the Fifth Workshop. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812792044.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Astbury, A., B. A. Campbell, F. C. Khanna, J. L. Pinfold und M. Vetterli. „Quantum Chromodynamics“. In Thirteenth Lake Louise Winter Institute. WORLD SCIENTIFIC, 1999. http://dx.doi.org/10.1142/9789814527767.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Fried, H. M., und B. Müller. „Quantum Chromodynamics“. In Proceedings of the Workshop. WORLD SCIENTIFIC, 1997. http://dx.doi.org/10.1142/9789814530125.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Knechtli, Francesco. „Lattice Quantum Chromodynamics“. In Corfu Summer Institute 2016 "School and Workshops on Elementary Particle Physics and Gravity". Trieste, Italy: Sissa Medialab, 2017. http://dx.doi.org/10.22323/1.292.0020.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

BUTTERWORTH, JON M. „QUANTUM CHROMODYNAMICS AT COLLIDERS“. In Proceedings of the XXII International Symposium. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812704023_0020.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Ferretti, G., S. G. Rajeev und Z. Yang. „Three dimensional quantum chromodynamics“. In Proceedings of the XXVI International Conference on High Energy Physics. Vol. II. AIP, 1992. http://dx.doi.org/10.1063/1.43442.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Larin, S. A. „Quantum chromodynamics with massive gluons“. In XITH CONFERENCE ON QUARK CONFINEMENT AND HADRON SPECTRUM. AIP Publishing LLC, 2016. http://dx.doi.org/10.1063/1.4938688.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Yoshida, M., A. Nakamura, M. Fukada, T. Nakamura und S. Hioki. „Quantum chromodynamics simulation on NWT“. In the 1995 ACM/IEEE conference. New York, New York, USA: ACM Press, 1995. http://dx.doi.org/10.1145/224170.224403.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Stuben, Hinnerk, und Yoshifumi Nakamura. „BQCD -- Berlin quantum chromodynamics program“. In The XXVIII International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2011. http://dx.doi.org/10.22323/1.105.0040.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

NARDULLI, G. „EFFECTIVE FIELDS IN DENSE QUANTUM CHROMODYNAMICS“. In Proceedings of a Meeting Held in the Framework of the Activities of GISELDA, the Italian Working Group on Strong Interactions. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776532_0020.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Quantum chromodynamics":

1

Brodsky, S. Testing Quantum Chromodynamics with Antiprotons. Office of Scientific and Technical Information (OSTI), Oktober 2004. http://dx.doi.org/10.2172/839984.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Campbell, J. M. Working Group Report: Quantum Chromodynamics. Office of Scientific and Technical Information (OSTI), Oktober 2013. http://dx.doi.org/10.2172/1345651.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Brodsky, S. J. New directions in Quantum Chromodynamics. Office of Scientific and Technical Information (OSTI), Dezember 1999. http://dx.doi.org/10.2172/753241.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Kronfeld, Andreas S., und /Fermilab. QCD: results from lattice quantum chromodynamics. Office of Scientific and Technical Information (OSTI), Oktober 2006. http://dx.doi.org/10.2172/897018.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Quigg, C. Quantum chromodynamics near the confinement limit. Office of Scientific and Technical Information (OSTI), September 1985. http://dx.doi.org/10.2172/6128799.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Vranas, P., und R. Soltz. The BlueGene/L Supercomputer and Quantum ChromoDynamics. Office of Scientific and Technical Information (OSTI), Oktober 2006. http://dx.doi.org/10.2172/902256.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Hansen, Maxwell. Multi-Hadron Observables from Lattice Quantum Chromodynamics. Office of Scientific and Technical Information (OSTI), Januar 2014. http://dx.doi.org/10.2172/1172552.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Dharmaratna, Welathantri G. D. Massive Quark Polarization in Quantum Chromodynamics Subprocesses. Office of Scientific and Technical Information (OSTI), Februar 1990. http://dx.doi.org/10.2172/1427763.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Psaker, Ales. Inclusive and Exclusive Compton Processes in Quantum Chromodynamics. Office of Scientific and Technical Information (OSTI), Dezember 2005. http://dx.doi.org/10.2172/892144.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Brodsky, Stanley J. The Light-Cone Fock Expansion in Quantum Chromodynamics. Office of Scientific and Technical Information (OSTI), September 2000. http://dx.doi.org/10.2172/765015.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Zur Bibliographie