Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Quantum chemistry“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Quantum chemistry" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Quantum chemistry"
Johnson, Jeffrey Allan. „The Case of the Missing German Quantum Chemists“. Historical Studies in the Natural Sciences 43, Nr. 4 (November 2012): 391–452. http://dx.doi.org/10.1525/hsns.2013.43.4.391.
Der volle Inhalt der QuelleW.J.O.-T. „Quantum Chemistry“. Journal of Molecular Structure: THEOCHEM 279 (Februar 1993): 321–22. http://dx.doi.org/10.1016/0166-1280(93)90081-l.
Der volle Inhalt der QuelleJ.W. „Quantum chemistry“. Journal of Molecular Structure: THEOCHEM 121 (März 1985): 317. http://dx.doi.org/10.1016/0166-1280(85)80072-5.
Der volle Inhalt der QuelleW, J. „Quantum chemistry“. Journal of Molecular Structure: THEOCHEM 136, Nr. 1-2 (März 1986): 201. http://dx.doi.org/10.1016/0166-1280(86)87075-0.
Der volle Inhalt der QuelleRempel, A. A., O. V. Ovchinnikov, I. A. Weinstein, S. V. Rempel, Yu V. Kuznetsova, A. V. Naumov, M. S. Smirnov, I. Yu Eremchev, A. S. Vokhmintsev und S. S. Savchenko. „Quantum dots: modern methods of synthesis and optical properties“. Russian Chemical Reviews 93, Nr. 4 (April 2024): RCR5114. http://dx.doi.org/10.59761/rcr5114.
Der volle Inhalt der QuelleClark, Timothy, und Martin G. Hicks. „Models of necessity“. Beilstein Journal of Organic Chemistry 16 (13.07.2020): 1649–61. http://dx.doi.org/10.3762/bjoc.16.137.
Der volle Inhalt der QuelleBarden, Christopher J., und Henry F. Schaefer. „Quantum chemistry in the 21st century (Special topic article)“. Pure and Applied Chemistry 72, Nr. 8 (01.01.2000): 1405–23. http://dx.doi.org/10.1351/pac200072081405.
Der volle Inhalt der QuelleMakushin, K. M., M. D. Sapova und A. K. Fedorov. „Quantum computing library for quantum chemistry applications“. Journal of Physics: Conference Series 2701, Nr. 1 (01.02.2024): 012032. http://dx.doi.org/10.1088/1742-6596/2701/1/012032.
Der volle Inhalt der QuelleArrazola, Juan Miguel, Olivia Di Matteo, Nicolás Quesada, Soran Jahangiri, Alain Delgado und Nathan Killoran. „Universal quantum circuits for quantum chemistry“. Quantum 6 (20.06.2022): 742. http://dx.doi.org/10.22331/q-2022-06-20-742.
Der volle Inhalt der QuelleHastings, Matthew B., Dave Wecker, Bela Bauer und Matthias Troyer. „Improving quantum algorithms for quantum chemistry“. Quantum Information and Computation 15, Nr. 1&2 (Januar 2015): 1–21. http://dx.doi.org/10.26421/qic15.1-2-1.
Der volle Inhalt der QuelleDissertationen zum Thema "Quantum chemistry"
Altunata, Serhan. „Generalized quantum defect methods in quantum chemistry“. Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/36257.
Der volle Inhalt der QuelleVita.
Includes bibliographical references (p. 247-254).
The reaction matrix of multichannel quantum defect theory, K, gives a complete picture of the electronic structure and the electron - nuclear dynamics for a molecule. The reaction matrix can be used to examine both bound states and free electron scattering properties of molecular systems, which are characterized by a Rydberg/scattering electron incident on an ionic-core. An ab initio computation of the reaction matrix for fixed molecular geometries is a substantive but important theoretical effort. In this thesis, a generalized quantum defect method is presented for determining the reaction matrix in a form which minimizes its energy dependence. This reaction matrix method is applied to the Rydberg electronic structure of Calcium monofluoride. The spectroscopic quantum defects for the ... states of CaF are computed using an effective one-electron calculation. Good agreement with the experimental values is obtained. The E-symmetry eigenquantum defects obtained from the CaF reaction matrix are found to have an energy dependence characteristic of a resonance. The analysis shows that the main features of the energy-dependent structure in the eigenphases are a consequence of a broad shape resonance in the 2E+ Rydberg series.
(cont.) This short-lived resonance is spread over the entire 2E+ Rydberg series and extends well into the ionization continuum. The effect of the shape resonance is manifested as a global "scarring" of the Rydberg spectrum, which is distinct from the more familiar local level-perturbations. This effect has been unnoticed in previous analyses. The quantum chemical foundation of the quantum defect method is established by a many-electron generalization of the reaction matrix calculation. Test results that validate the many-electron theory are presented for the quantum defects of the lsagnpo, E+ Rydberg series of the hydrogen molecule. It is possible that the reaction matrix calculations on CaF and H2 can pave the way for a novel type of quantum chemistry that aims to calculate the electronic structure over the entire bound-state region, as opposed to the current methods that focus on state by state calculations.
by Serhan Altunata.
Ph.D.
Njegic, Bosiljka. „Cooking up quantum chemistry“. [Ames, Iowa : Iowa State University], 2008.
Den vollen Inhalt der Quelle findenRudberg, Elias. „Quantum Chemistry for Large Systems“. Doctoral thesis, Stockholm : Bioteknologi, Kungliga Tekniska högskolan, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4561.
Der volle Inhalt der QuelleGilbert, A. T. B. „Density methods in quantum chemistry“. Thesis, University of Cambridge, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.599402.
Der volle Inhalt der QuelleStrange, Robin. „Electron correlation in quantum chemistry“. Thesis, University of Birmingham, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.289793.
Der volle Inhalt der QuelleMurray, Christopher William. „Quantum chemistry for large molecules“. Thesis, University of Cambridge, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.317841.
Der volle Inhalt der QuelleRubensson, Emanuel H. „Matrix Algebra for Quantum Chemistry“. Doctoral thesis, Stockholm : Bioteknologi, Kungliga Tekniska högskolan, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-9447.
Der volle Inhalt der QuellePye, Cory C. „Applications of optimization to quantum chemistry“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/nq23109.pdf.
Der volle Inhalt der QuelleLing, Song. „Aspects of quantum dynamics in chemistry /“. Thesis, Connect to this title online; UW restricted, 1990. http://hdl.handle.net/1773/11620.
Der volle Inhalt der QuelleBast, Radovan. „Quantum chemistry beyond the charge density“. Université Louis Pasteur (Strasbourg) (1971-2008), 2008. https://publication-theses.unistra.fr/public/theses_doctorat/2008/BAST_Radovan_2008.pdf.
Der volle Inhalt der QuelleThis thesis focuses on the calculation and visualization of molecular properties within the 4-component relativistic framework. Response theory together with density functional theory (DFT) within the Kohn-Sham approach are the main tools. The implementation of closed-shell linear and quadratic response functions within time-dependent DFT in the 4-component relativistic framework is presented with extensions that include contributions from the spin density. This thesis contains the first 4-component relativistic Hartree-Fock study of parity-violating effects on nuclear magnetic resonance parameters. An analytical real-space approach to frequency-dependent second-order molecular properties within the 4-component relativistic framework is introduced together with tools for the visualization of higher-order molecular properties based on the finite perturbation approach
Bücher zum Thema "Quantum chemistry"
Veszprémi, Tamás, und Miklós Fehér. Quantum Chemistry. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4189-9.
Der volle Inhalt der QuelleA, Peterson Kirk, Hrsg. Quantum chemistry. 3. Aufl. Amsterdam: Elsevier, 2005.
Den vollen Inhalt der Quelle findenLowe, John P. Quantum chemistry. 2. Aufl. Boston: Academic Press, 1993.
Den vollen Inhalt der Quelle findenN, Levine Ira. Quantum chemistry. 5. Aufl. Upper Saddle River, N.J: Prentice Hall, 2000.
Den vollen Inhalt der Quelle findenN, Levine Ira. Quantum chemistry. 3. Aufl. USA: Allyn & Bacon, 1991.
Den vollen Inhalt der Quelle findenLowe, John P. Quantum chemistry. 3. Aufl. Burlington, MA: Elsevier Academic Press, 2006.
Den vollen Inhalt der Quelle findenRoos, Björn O., Roland Lindh, Per Åke Malmqvist, Valera Veryazov und Per-Olof Widmark. Multiconfigurational Quantum Chemistry. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119126171.
Der volle Inhalt der QuelleSmith, Vedene H., Henry F. Schaefer und Keiji Morokuma, Hrsg. Applied Quantum Chemistry. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4746-7.
Der volle Inhalt der QuelleOnishi, Taku. Quantum Computational Chemistry. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-5933-9.
Der volle Inhalt der QuellePrasad, Ram Yatan, und Pranita. Computational Quantum Chemistry. 2. Aufl. Second edition. | Boca Raton : CRC Press, 2021.: CRC Press, 2021. http://dx.doi.org/10.1201/9781003133605.
Der volle Inhalt der QuelleBuchteile zum Thema "Quantum chemistry"
Simões, Ana. „Quantum Chemistry“. In Compendium of Quantum Physics, 518–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-70626-7_158.
Der volle Inhalt der QuelleTsuneda, Takao. „Quantum Chemistry“. In Density Functional Theory in Quantum Chemistry, 1–33. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-54825-6_1.
Der volle Inhalt der QuelleBattaglia, Franco, und Thomas F. George. „Quantum Chemistry“. In Fundamentals in Chemical Physics, 141–82. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-017-1636-9_4.
Der volle Inhalt der QuelleHandy, Nicholas C., und S. F. Boys. „Quantum chemistry“. In 100 Years of Physical Chemistry, 57–66. Cambridge: Royal Society of Chemistry, 2007. http://dx.doi.org/10.1039/9781847550002-00057.
Der volle Inhalt der QuellePène, Olivier, Karl Jansen, Norman H. Christ, Norman H. Christ und Salvador Coll. „Quantum Chemistry“. In Encyclopedia of Parallel Computing, 1689. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-09766-4_2418.
Der volle Inhalt der QuelleWilson, Stephen. „Quantum Chemistry“. In Chemistry by Computer, 41–83. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2137-8_4.
Der volle Inhalt der QuelleCasadesús, Ricard. „Quantum Chemistry“. In Encyclopedia of Sciences and Religions, 1921–22. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-1-4020-8265-8_1666.
Der volle Inhalt der QuelleOnishi, Taku. „Helium Chemistry“. In Quantum Computational Chemistry, 277–85. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5933-9_15.
Der volle Inhalt der QuelleDua, Amita, und Chayannika Singh. „Basics of Computational Chemistry“. In Quantum Chemistry, 565–91. London: CRC Press, 2024. http://dx.doi.org/10.1201/9781003490135-11.
Der volle Inhalt der QuelleSautet, Philippe. „Quantum Chemistry Methods“. In Characterization of Solid Materials and Heterogeneous Catalysts, 1119–45. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527645329.ch24.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Quantum chemistry"
Maroulis, George. „Computational quantum chemistry“. In INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2009: (ICCMSE 2009). AIP, 2012. http://dx.doi.org/10.1063/1.4771781.
Der volle Inhalt der QuelleEllinger, Yves. „The Quantum Chemistry alternative“. In Second international conference on atomic and molecular data and their applications. AIP, 2000. http://dx.doi.org/10.1063/1.1336283.
Der volle Inhalt der QuelleFedorov, Dmitry, Matthew Otten, Byeol Kang, Anouar Benali, Salman Habib, Stephen Gray und Yuri Alexeev. „Quantum Resource Estimation for Quantum Chemistry Algorithms“. In 2022 IEEE International Conference on Quantum Computing and Engineering (QCE). IEEE, 2022. http://dx.doi.org/10.1109/qce53715.2022.00144.
Der volle Inhalt der QuelleSingh, Harshdeep. „Analytic Quantum Gradient Descent in Quantum Chemistry Simulations“. In Quantum 2.0. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/quantum.2022.qw2a.4.
Der volle Inhalt der QuelleFreedman, Danna. „Chemistry for quantum information science“. In Quantum Sensing, Imaging, and Precision Metrology, herausgegeben von Selim M. Shahriar und Jacob Scheuer. SPIE, 2023. http://dx.doi.org/10.1117/12.2657322.
Der volle Inhalt der QuelleYuan, Zhiyang, Lila V. H. Rodgers, Jared Rovny, Sorawis Sangtawesin, Srikanth Srinivasan, James Allred, Nathalie P. de Leon und Patryk Gumann. „Ultrahigh Vacuum Surface Chemistry For Nanoscale Sensors In Diamond“. In Quantum 2.0. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/quantum.2022.qtu2a.11.
Der volle Inhalt der Quelle„THE CROSS-PLATFORM QUANTUM CHEMISTRY SOFTWARE FOR COLLEGE CHEMISTRY EDUCATION“. In 2nd International Conference on Computer Supported Education. SciTePress - Science and and Technology Publications, 2010. http://dx.doi.org/10.5220/0002793104380441.
Der volle Inhalt der QuellePerera, Ajith, Theodore E. Simos und George Maroulis. „Predictive Quantum Chemistry: A Step Toward “Chemistry Without Test Tubes”“. In COMPUTATIONAL METHODS IN SCIENCE AND ENGINEERING: Theory and Computation: Old Problems and New Challenges. Lectures Presented at the International Conference on Computational Methods in Science and Engineering 2007 (ICCMSE 2007): VOLUME 1. AIP, 2007. http://dx.doi.org/10.1063/1.2835948.
Der volle Inhalt der QuelleMa, Jonathan H., Han Wang, David Prendergast, Andrew R. Neureuther und Patrick Naulleau. „Investigating EUV radiation chemistry with first principle quantum chemistry calculations“. In International Conference on Extreme Ultraviolet Lithography 2019, herausgegeben von Kurt G. Ronse, Paolo A. Gargini, Patrick P. Naulleau und Toshiro Itani. SPIE, 2019. http://dx.doi.org/10.1117/12.2538558.
Der volle Inhalt der QuelleYuen-Zhou, Joel. „Controlling chemistry with vibrational polaritons“. In Conference on Coherence and Quantum Optics. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/cqo.2019.w4b.4.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Quantum chemistry"
Aspuru-Guzik, Alan. Quantum Computing for Quantum Chemistry. Fort Belvoir, VA: Defense Technical Information Center, September 2010. http://dx.doi.org/10.21236/ada534093.
Der volle Inhalt der QuelleAuthor, Not Given. Computational quantum chemistry website. Office of Scientific and Technical Information (OSTI), August 1997. http://dx.doi.org/10.2172/7376091.
Der volle Inhalt der QuelleTaube, Andrew Garvin. Steps toward fault-tolerant quantum chemistry. Office of Scientific and Technical Information (OSTI), Mai 2010. http://dx.doi.org/10.2172/992330.
Der volle Inhalt der QuelleUmrigar, Cyrus J. Quantum Chemistry via Walks in Determinant Space. Office of Scientific and Technical Information (OSTI), Januar 2016. http://dx.doi.org/10.2172/1233718.
Der volle Inhalt der QuelleC. F. Melius und M. D. Allendorf. Bond additivity corrections for quantum chemistry methods. Office of Scientific and Technical Information (OSTI), April 1999. http://dx.doi.org/10.2172/751014.
Der volle Inhalt der QuelleSholl, David. Quantum Chemistry for Surface Segregation in Metal Alloys. Office of Scientific and Technical Information (OSTI), August 2006. http://dx.doi.org/10.2172/1109080.
Der volle Inhalt der QuelleHollingsworth, Jennifer. Advanced Quantum Emitters: Chemistry, Photophysics, Integration and Application. Office of Scientific and Technical Information (OSTI), Mai 2021. http://dx.doi.org/10.2172/1781363.
Der volle Inhalt der QuelleHarrison, Robert J., David E. Bernholdt, Bruce E. Bursten, Wibe A. De Jong, David A. Dixon, Kenneth G. Dyall, Walter V. Ermler et al. Computational Chemistry for Nuclear Waste Characterization and Processing: Relativistic Quantum Chemistry of Actinides. Office of Scientific and Technical Information (OSTI), August 2002. http://dx.doi.org/10.2172/15010139.
Der volle Inhalt der QuelleJones, H. W., und C. A. Weatherford. Analytical Methods Using Slater-Type Orbitals in Quantum Chemistry. Fort Belvoir, VA: Defense Technical Information Center, März 1992. http://dx.doi.org/10.21236/ada251044.
Der volle Inhalt der QuelleMun, Eundeok. Yb-based heavy fermion compounds and field tuned quantum chemistry. Office of Scientific and Technical Information (OSTI), Januar 2010. http://dx.doi.org/10.2172/985312.
Der volle Inhalt der Quelle