Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Quantitative genetics“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Quantitative genetics" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Quantitative genetics"
Mackay, Trudy F. C., Michael Lynch und Bruce Walsh. „Quantitative Genetics“. Evolution 53, Nr. 1 (Februar 1999): 307. http://dx.doi.org/10.2307/2640946.
Der volle Inhalt der QuelleGunter, Chris. „Quantitative genetics“. Nature 456, Nr. 7223 (Dezember 2008): 719. http://dx.doi.org/10.1038/456719a.
Der volle Inhalt der QuelleMackay, Trudy F. C. „QUANTITATIVE GENETICS“. Evolution 53, Nr. 1 (Februar 1999): 307–9. http://dx.doi.org/10.1111/j.1558-5646.1999.tb05359.x.
Der volle Inhalt der QuelleHill, William G. „Sewall Wright and quantitative genetics“. Genome 31, Nr. 1 (01.01.1989): 190–95. http://dx.doi.org/10.1139/g89-033.
Der volle Inhalt der Quellevan Buijtenen, J. P. „Genomics and quantitative genetics“. Canadian Journal of Forest Research 31, Nr. 4 (01.04.2001): 617–22. http://dx.doi.org/10.1139/x00-171.
Der volle Inhalt der QuelleFRANKHAM, RICHARD. „Quantitative genetics in conservation biology“. Genetical Research 74, Nr. 3 (Dezember 1999): 237–44. http://dx.doi.org/10.1017/s001667239900405x.
Der volle Inhalt der QuellePlomin, Robert, und Jenae Neiderhiser. „Quantitative Genetics, Molecular Genetics, and Intelligence“. Intelligence 15, Nr. 4 (Oktober 1991): 369–87. http://dx.doi.org/10.1016/0160-2896(91)90001-t.
Der volle Inhalt der QuelleHansen, Thomas F., und Christophe Pélabon. „Evolvability: A Quantitative-Genetics Perspective“. Annual Review of Ecology, Evolution, and Systematics 52, Nr. 1 (02.11.2021): 153–75. http://dx.doi.org/10.1146/annurev-ecolsys-011121-021241.
Der volle Inhalt der QuelleMacgregor, Stuart, Sara A. Knott, Ian White und Peter M. Visscher. „Quantitative Trait Locus Analysis of Longitudinal Quantitative Trait Data in Complex Pedigrees“. Genetics 171, Nr. 3 (14.07.2005): 1365–76. http://dx.doi.org/10.1534/genetics.105.043828.
Der volle Inhalt der QuelleSlatkin, Montgomery. „Quantitative Genetics of Heterochrony“. Evolution 41, Nr. 4 (Juli 1987): 799. http://dx.doi.org/10.2307/2408889.
Der volle Inhalt der QuelleDissertationen zum Thema "Quantitative genetics"
Olsson, Charlotta. „Quantitative analysis of disease associated mutations and sequence variants“. Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2001. http://publications.uu.se/theses/91-554-5018-0/.
Der volle Inhalt der QuelleSouleman, Dima. „Genetic consequences of colonization of a metal-polluted environment, population genetics and quantitative genetics approaches“. Thesis, Lille 1, 2017. http://www.theses.fr/2017LIL10006/document.
Der volle Inhalt der QuelleNatural habitats are more and more destructed and fragmented by urban expansion and human activities. The fragmentation of natural and agricultural areas by buildings and new infrastructures affects the size, connectivity and the quality of habitats. The populations of organisms inhabiting these anthropized territories are then more isolated. However, differentiation between populations of the same organism depends on demographic and genetic processes such as genetic drift, gene flow, mutation and natural selection. Only species that have developed special tolerance mechanisms can persist under changed environmental conditions. The introduction of contaminants such as metals in the environment may influence plants and animals evolution by modifying the evolutionary forces and thus generating differences between populations. In this work, attention was focused on the genetic consequences of metallic pollution on two species, the earthworm Lumbricus terrestris and the plant model Arabidopsis halleri. Two different approaches have been used to study the genetic response to metallic contamination: a population genetic approach was performed in L. terrestris and a quantitative genetic approach was carried on in A. halleri. First, it was a question of identifying and validating new microsatellite markers in L. terrestris. These markers were then used to characterize the neutral genetic diversity in worms collected from agricultural and urban sites. Secondly, genetic architecture of Zn tolerance and Zn hyperaccumulation was conducted investigated for the first time using an intraspecific crossing between metallicolous and non-metallicolous individuals of A. halleri. High density of SNP markers was used to proceed to the QTL mapping step
Santure, Anna Wensley, und n/a. „Quantitative genetic models for genomic imprinting“. University of Otago. Department of Zoology, 2006. http://adt.otago.ac.nz./public/adt-NZDU20060811.134008.
Der volle Inhalt der QuelleShen, Xia. „Novel Statistical Methods in Quantitative Genetics : Modeling Genetic Variance for Quantitative Trait Loci Mapping and Genomic Evaluation“. Doctoral thesis, Uppsala universitet, Beräknings- och systembiologi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-170091.
Der volle Inhalt der QuelleKeightley, Peter D. „Studies of quantitative genetic variation“. Thesis, University of Edinburgh, 1988. http://hdl.handle.net/1842/12340.
Der volle Inhalt der QuelleGunn, Melissa Rose School of Biological Earth & Environmental Science UNSW. „The use of microsatellites as a surrogate for quantitative trait variation in conservation“. Awarded by:University of New South Wales. School of Biological, Earth and Environmental Science, 2003. http://handle.unsw.edu.au/1959.4/22457.
Der volle Inhalt der QuelleCerqueira, Pedro Henrique Ramos. „Structural equation models applied to quantitative genetics“. Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/11/11134/tde-05112015-145419/.
Der volle Inhalt der QuelleModelos causais têm sido muitos utilizados em estudos em diferentes áreas de conhecimento, a fim de compreender as associações ou relações causais entre variáveis. Durante as últimas décadas, o uso desses modelos têm crescido muito, especialmente estudos relacionados à sistemas biológicos, uma vez que compreender as relações entre características são essenciais para prever quais são as consequências de intervenções em tais sistemas. Análise do grafo (AG) e os modelos de equações estruturais (MEE) são utilizados como ferramentas para explorar essas relações. Enquanto AG nos permite buscar por estruturas causais, que representam qualitativamente como as variáveis são causalmente conectadas, ajustando o MEE com uma estrutura causal conhecida nos permite inferir a magnitude dos efeitos causais. Os MEE também podem ser vistos como modelos de regressão múltipla em que uma variável resposta pode ser vista como explanatória para uma outra característica. Estudos utilizando MEE em genética quantitativa visam estudar os efeitos genéticos diretos e indiretos associados aos indivíduos por meio de informações realcionadas aos indivíduas, além das característcas observadas, como por exemplo o parentesco entre eles. Neste contexto, é tipicamente adotada a suposição que as características observadas são relacionadas linearmente. No entanto, para alguns cenários, relações não lineares são observadas, o que torna as suposições mencionadas inadequadas. Para superar essa limitação, este trabalho propõe o uso de modelos de equações estruturais de efeitos polinomiais mistos, de segundo grau ou seperior, para modelar relações não lineares. Neste trabalho foram desenvolvidos dois estudos, um de simulação e uma aplicação a dados reais. O primeiro estudo envolveu a simulação de 50 conjuntos de dados, com uma estrutura causal completamente recursiva, envolvendo 3 características, em que foram permitidas relações causais lineares e não lineares entre as mesmas. O segundo estudo envolveu a análise de características relacionadas ao gado leiteiro da raça Holandesa, foram utilizadas relações entre os seguintes fenótipos: dificuldade de parto, duração da gestação e a proporção de morte perionatal. Nós comparamos o modelo misto de múltiplas características com os modelos de equações estruturais polinomiais, com diferentes graus polinomiais, a fim de verificar os benefícios do MEE polinomial de segundo grau ou superior. Para algumas situações a suposição inapropriada de linearidade resulta em previsões pobres das variâncias e covariâncias genéticas diretas, indiretas e totais, seja por superestimar, subestimar, ou mesmo atribuir sinais opostos as covariâncias. Portanto, verificamos que a inclusão de um grau de polinômio aumenta o poder de expressão do MEE.
Mayo, Oliver. „Contributions to quantitative and population genetics : a collection of publications with introduction“. Title page, contents and introduction only, 1987. http://web4.library.adelaide.edu.au/theses/09SD/09sdm473.pdf.
Der volle Inhalt der QuelleRandall, Joshua Charles. „Large-scale genetic analysis of quantitative traits“. Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:addfb69d-602c-43e3-ab18-6e6d3b269076.
Der volle Inhalt der QuelleWambach, Tina. „Effects of epistatic interaction on detection and parameter analysis of quantitative trait loci“. Thesis, McGill University, 2001. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=33039.
Der volle Inhalt der QuelleBücher zum Thema "Quantitative genetics"
Xu, Shizhong. Quantitative Genetics. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-83940-6.
Der volle Inhalt der QuelleFalconer, D. S. Introductionto quantitative genetics. 3. Aufl. Harlow: Longman Scientific & Technical, 1989.
Den vollen Inhalt der Quelle findenRoff, Derek A. Evolutionary Quantitative Genetics. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-4080-9.
Der volle Inhalt der QuelleC, MacKay Trudy F., Hrsg. Introduction to quantitative genetics. 4. Aufl. Harlow: Prentice Hall, 1996.
Den vollen Inhalt der Quelle findenHallauer, Arnel R. Quantitative genetics in maize breeding. 3. Aufl. New York: Springer, 2010.
Den vollen Inhalt der Quelle findenHallauer, Arnel R. Quantitative genetics in maize breeding. 3. Aufl. New York: Springer, 2010.
Den vollen Inhalt der Quelle findenFalconer, D. S. Introduction to quantitative genetics. 3. Aufl. London: Longman Scientific & Technical, 1989.
Den vollen Inhalt der Quelle findenBecker, Walter A. Manual of quantitative genetics. 5. Aufl. Pullman, WA, U.S.A: Academic Enterprises, 1992.
Den vollen Inhalt der Quelle findenFalconer, D. S. Introduction to quantitative genetics. 3. Aufl. Burnt Mill, Harlow, Essex, England: Longman, Scientific & Technical, 1989.
Den vollen Inhalt der Quelle findenFalconer, D. S. Introduction to quantitative genetics. 2. Aufl. Burnt Mill, Harlow, Essex, England: Longman Scientific & Technical, 1986.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Quantitative genetics"
Nagylaki, Thomas. „Quantitative Genetics“. In Introduction to Theoretical Population Genetics, 279–339. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-76214-7_10.
Der volle Inhalt der QuellePriyadarshan, P. M. „Quantitative Genetics“. In PLANT BREEDING: Classical to Modern, 269–98. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7095-3_14.
Der volle Inhalt der QuellePrincée, F. P. G. „Quantitative Genetics“. In Topics in Biodiversity and Conservation, 219–43. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-50032-4_16.
Der volle Inhalt der QuelleChatterjee, Anindo. „Quantitative Genetics“. In Genetics Fundamentals Notes, 1029–76. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7041-1_20.
Der volle Inhalt der QuelleKulandhasamy, Maheswari, Sunil Singh und Indrani Mukherjee. „Quantitative Genetics“. In Encyclopedia of Animal Cognition and Behavior, 1–3. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-47829-6_168-1.
Der volle Inhalt der QuelleKulandhasamy, Maheswari, Sunil Singh und Indrani Mukherjee. „Quantitative Genetics“. In Encyclopedia of Animal Cognition and Behavior, 5837–39. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-319-55065-7_168.
Der volle Inhalt der QuelleMeredith, William R. „Quantitative Genetics“. In Agronomy Monographs, 131–50. Madison, WI, USA: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, 2016. http://dx.doi.org/10.2134/agronmonogr24.c5.
Der volle Inhalt der QuelleCampbell, B. Todd, und Gerald O. Myers. „Quantitative Genetics“. In Agronomy Monographs, 187–203. Madison, WI, USA: American Society of Agronomy, Inc., Crop Science Society of America, Inc., and Soil Science Society of America, Inc., 2015. http://dx.doi.org/10.2134/agronmonogr57.2013.0024.
Der volle Inhalt der QuelleLaurentin Táriba, Hernán Eduardo. „Quantitative Genetics“. In Agricultural Genetics, 167–78. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-37192-9_12.
Der volle Inhalt der QuelleXu, Shizhong. „Resemblance between Relatives“. In Quantitative Genetics, 135–46. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-83940-6_9.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Quantitative genetics"
Galas, David, James Kunert-Graf und Nikita Sakhanenko. „Developing an information theory of quantitative genetics“. In Entropy 2021: The Scientific Tool of the 21st Century. Basel, Switzerland: MDPI, 2021. http://dx.doi.org/10.3390/entropy2021-09821.
Der volle Inhalt der QuelleSantana, Roberto, Hossein Karshenas, Concha Bielza und Pedro Larrañaga. „Quantitative genetics in multi-objective optimization algorithms“. In the 13th annual conference companion. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/2001858.2001911.
Der volle Inhalt der QuelleMilkevych, V., E. Karaman, G. Sahana, L. Janss, Z. Cai und M. S. Lund. „351. Quantitative trait simulation using MeSCoT software“. In World Congress on Genetics Applied to Livestock Production. The Netherlands: Wageningen Academic Publishers, 2022. http://dx.doi.org/10.3920/978-90-8686-940-4_351.
Der volle Inhalt der Quelle„Quantitative real-time PCR as a supplementary tool for molecular cytogenetics“. In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/plantgen2019-044.
Der volle Inhalt der QuelleBijma, P., A. D. Hulst und M. C. M. de Jong. „163. A quantitative genetic theory for infectious diseases“. In World Congress on Genetics Applied to Livestock Production. The Netherlands: Wageningen Academic Publishers, 2022. http://dx.doi.org/10.3920/978-90-8686-940-4_163.
Der volle Inhalt der QuelleDavoodi, P., A. Ehsani, R. Vaez Torshizi und A. A. Masoudi. „596. Chicken quantitative traits follow the omnigenic model“. In World Congress on Genetics Applied to Livestock Production. The Netherlands: Wageningen Academic Publishers, 2022. http://dx.doi.org/10.3920/978-90-8686-940-4_596.
Der volle Inhalt der Quelle„Methods of computer vision to extract the quantitative characteristics of the wheat spike“. In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/plantgen2019-060.
Der volle Inhalt der QuelleTsuruta, S., D. A. L. Lourenco und I. Misztal. „432. Efficient genetic progress for quantitative traits through genomic selection“. In World Congress on Genetics Applied to Livestock Production. The Netherlands: Wageningen Academic Publishers, 2022. http://dx.doi.org/10.3920/978-90-8686-940-4_432.
Der volle Inhalt der Quelle„The association mapping of quantitative resistance loci to net blotch and spot blotch in barley“. In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/plantgen2019-149.
Der volle Inhalt der QuelleTortereau, F., C. Marie-Etancelin, D. Marcon und J. L. Weisbecker. „49. Feed intake can be predicted as quantitative or qualitative traits“. In World Congress on Genetics Applied to Livestock Production. The Netherlands: Wageningen Academic Publishers, 2022. http://dx.doi.org/10.3920/978-90-8686-940-4_49.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Quantitative genetics"
Paran, Ilan, und Molly Jahn. Genetics and comparative molecular mapping of biochemical and morphological fruit characters in Capsicum. United States Department of Agriculture, März 2005. http://dx.doi.org/10.32747/2005.7586545.bard.
Der volle Inhalt der QuelleZhang, Hongbin B., David J. Bonfil und Shahal Abbo. Genomics Tools for Legume Agronomic Gene Mapping and Cloning, and Genome Analysis: Chickpea as a Model. United States Department of Agriculture, März 2003. http://dx.doi.org/10.32747/2003.7586464.bard.
Der volle Inhalt der QuelleBlum, Abraham, Henry T. Nguyen und N. Y. Klueva. The Genetics of Heat Shock Proteins in Wheat in Relation to Heat Tolerance and Yield. United States Department of Agriculture, August 1993. http://dx.doi.org/10.32747/1993.7568105.bard.
Der volle Inhalt der QuelleParan, Ilan, und Molly Jahn. Analysis of Quantitative Traits in Pepper Using Molecular Markers. United States Department of Agriculture, Januar 2000. http://dx.doi.org/10.32747/2000.7570562.bard.
Der volle Inhalt der QuelleMoore, Gloria A., Gozal Ben-Hayyim, Charles L. Guy und Doron Holland. Mapping Quantitative Trait Loci in the Woody Perennial Plant Genus Citrus. United States Department of Agriculture, Mai 1995. http://dx.doi.org/10.32747/1995.7570565.bard.
Der volle Inhalt der QuelleSherman, Amir, Rebecca Grumet, Ron Ophir, Nurit Katzir und Yiqun Weng. Whole genome approach for genetic analysis in cucumber: Fruit size as a test case. United States Department of Agriculture, Dezember 2013. http://dx.doi.org/10.32747/2013.7594399.bard.
Der volle Inhalt der QuelleFeldman, Moshe, Eitan Millet, Calvin O. Qualset und Patrick E. McGuire. Mapping and Tagging by DNA Markers of Wild Emmer Alleles that Improve Quantitative Traits in Common Wheat. United States Department of Agriculture, Februar 2001. http://dx.doi.org/10.32747/2001.7573081.bard.
Der volle Inhalt der QuelleOrphan, Victoria, Gene Tyson, Christof Meile, Shawn McGlynn, Hang Yu, Grayson Chadwick, Jeffrey Marlow et al. Systems Level Dissection of Anaerobic Methane Cycling: Quantitative Measurements of Single Cell Ecophysiology, Genetic Mechanisms, and Microbial Interactions. Office of Scientific and Technical Information (OSTI), Dezember 2017. http://dx.doi.org/10.2172/1414771.
Der volle Inhalt der QuelleSanta Sepúlveda, Juan David, Jhon Berdugo Cely, Mauricio Soto Suárez, Teresa Mosquera und Carlos Galeano. A genetic linkage map of tetraploid potato (Solanum tuberosum L.) for Phytophthora infestans and Tecia solanivora quantitative resistance. Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA, 2016. http://dx.doi.org/10.21930/agrosavia.poster.2016.28.
Der volle Inhalt der QuelleWeller, Joel I., Harris A. Lewin und Micha Ron. Determination of Allele Frequencies for Quantitative Trait Loci in Commercial Animal Populations. United States Department of Agriculture, Februar 2005. http://dx.doi.org/10.32747/2005.7586473.bard.
Der volle Inhalt der Quelle