Dissertationen zum Thema „QSAR Model“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-46 Dissertationen für die Forschung zum Thema "QSAR Model" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Spreafico, Morena. „Mixed-model QSAR at the glucocorticoid and liver X receptors /“. [S.l.] : [s.n.], 2009. http://edoc.unibas.ch/diss/DissB_8730.
Der volle Inhalt der QuelleBagchi, Bhaskar. „Quantum chemical calculation and structure activity relationship of bioactive terpenoids“. Thesis, University of North Bengal, 2016. http://ir.nbu.ac.in/handle/123456789/2762.
Der volle Inhalt der QuelleRaynaud, Isabelle. „Etude des relations structure-activité quantitatives (QSAR) des cytokinines : synthèse et activité biologique de nouvelles molécules actives“. Angers, 1996. http://www.theses.fr/1996ANGE0022.
Der volle Inhalt der QuelleMazzatorta, Paolo. „Evaluation of pesticide toxicity : a hierarchical QSAR approach to model the acute aquatic toxicity and avian oral toxicity of pesticides“. Thesis, Open University, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.424819.
Der volle Inhalt der QuelleMalazizi, Ladan. „Development of Artificial Intelligence-based In-Silico Toxicity Models. Data Quality Analysis and Model Performance Enhancement through Data Generation“. Thesis, University of Bradford, 2008. http://hdl.handle.net/10454/4262.
Der volle Inhalt der QuelleModa, Tiago Luiz. „Desenvolvimento de modelos in silico de propriedades de ADME para a triagem de novos candidatos a fármacos“. Universidade de São Paulo, 2007. http://www.teses.usp.br/teses/disponiveis/76/76132/tde-22032007-112055/.
Der volle Inhalt der QuelleMolecular modeling tools and quantitative structure-activity relantionships (QSAR) or structure-property (QSPR) are integrated into the drug design process in the search for new bioactive molecules with good pharmacokinetic and pharmacodynamic properties. The Medicinal Chemistry work carried out in this Masters dissertation concerned studies of the quantitative relationshisps between chemical structure and the pharmacokinetic properties oral bioavailability and plasma protein binding. In the present work, standard data sets for bioavailability and plasma protein binding were organized encompassing the structural information and corresponding pharmacokinetic data. The created data sets established the scientific basis for the development of predictive models using the hologram QSAR and VolSurf methods. The final HQSAR and VolSurf models posses high internal and external consistency with good correlative and predictive power. Due to the simplicity, robustness and effectivess, these models are useful guides in Medicinal Chemistry in the early stages of the drug discovery and development process.
MANSOURI, KAMEL. „New molecular descriptors for estimating degradation and fate of organic pollutants by QSAR/QSPR models within reach“. Doctoral thesis, Università degli Studi di Milano-Bicocca, 2013. http://hdl.handle.net/10281/45611.
Der volle Inhalt der QuelleDimitriadis, Spyridon. „Multi-task regression QSAR/QSPR prediction utilizing text-based Transformer Neural Network and single-task using feature-based models“. Thesis, Linköpings universitet, Statistik och maskininlärning, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-177186.
Der volle Inhalt der QuelleSköld, Christian. „Computational Modeling of the AT2 Receptor and AT2 Receptor Ligands : Investigating Ligand Binding, Structure–Activity Relationships, and Receptor-Bound Models“. Doctoral thesis, Uppsala University, Organic Pharmaceutical Chemistry, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-7823.
Der volle Inhalt der QuelleRational conversion of biologically active peptides to nonpeptide compounds with retained activity is an appealing approach in drug development. One important objective of the work presented in this thesis was to use computational modeling to aid in such a conversion of the peptide angiotensin II (Ang II, Asp-Arg-Val-Tyr-Ile-His-Pro-Phe). An equally important objective was to gain an understanding of the requirements for ligand binding to the Ang II receptors, with a focus on interactions with the AT2 receptor.
The bioactive conformation of a peptide can provide important guidance in peptidomimetic design. By designing and introducing well-defined secondary structure mimetics into Ang II the bioactive conformation can be addressed. In this work, both γ- and β-turn mimetic scaffolds have been designed and characterized for incorporation into Ang II. Using conformational analysis and the pharmacophore recognition method DISCO, a model was derived of the binding mode of the pseudopeptide Ang II analogues. This model indicated that the positioning of the Arg side chain was important for AT2 receptor binding, which was also supported when the structure–activity relationship of Ang II was investigated by performing a glycine scan.
To further examine ligand binding, a 3D model of the AT2 receptor was constructed employing homology modeling. Using this receptor model in a docking study of the ligands, binding modes were identified that were in agreement with data from point-mutation studies of the AT2 receptor.
By investigating truncated Ang II analogues, small pseudopeptides were developed that were structurally similar to nonpeptide AT2 receptor ligands. For further guidance in ligand design of nonpeptide compounds, three-dimensional quantitative structure–activity relationship models for AT1 and AT2 receptor affinity as well as selectivity were derived.
Sköld, Christian. „Computational Modeling of the AT2 Receptor and AT2 Receptor Ligands : Investigating Ligand Binding, Structure–Activity Relationships, and Receptor-Bound Models“. Doctoral thesis, Uppsala universitet, Avdelningen för organisk farmaceutisk kemi, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-7823.
Der volle Inhalt der QuelleHolm, Lotta. „The MHC-glycopeptide-T cell interaction in collagen induced arthritis : a study using glycopeptides, isosteres and statistical molecular design in a mouse model for rheumatoid arthritis“. Doctoral thesis, Umeå : Department of Chemistry, Umeå University, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-899.
Der volle Inhalt der QuelleAlwassil, Osama I. „Elaboration and Design of α7 nAChR Negative Allosteric Modulators“. VCU Scholars Compass, 2015. http://scholarscompass.vcu.edu/etd/3902.
Der volle Inhalt der QuelleReddy, Badinehal Asrith. „COMMERCIALIZATION OF A QUANTITATIVE STRUCTURE ACTIVITY RELATIONSHIP TOOL - SARCHITECT“. Case Western Reserve University School of Graduate Studies / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=case1295637833.
Der volle Inhalt der QuelleCONCU, RICCARDO. „New QSAR models based on Markov Chains to predict protein functions“. Doctoral thesis, Università degli Studi di Cagliari, 2010. http://hdl.handle.net/11584/266281.
Der volle Inhalt der QuellePeterson, Shane. „Improved CoMFA Modeling by Optimization of Settings : Toward the Design of Inhibitors of the HCV NS3 Protease“. Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-8140.
Der volle Inhalt der QuelleZhong, Shifa. „Permanganate Reaction Kinetics and Mechanisms and Machine Learning Application in Oxidative Water Treatment“. Case Western Reserve University School of Graduate Studies / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=case1618686803768471.
Der volle Inhalt der QuelleHobocienski, Bryan Christopher. „Locality-Dependent Training and Descriptor Sets for QSAR Modeling“. The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1577716259011585.
Der volle Inhalt der QuelleSimões, Rodolfo da Silva. „Técnicas de transferência de aprendizagem aplicadas a modelos QSAR para regressão“. Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/100/100131/tde-07062018-120939/.
Der volle Inhalt der QuelleTo develop a new medicament, researches must analyze the biological targets of a given disease, discover and develop drug candidates for this biological target, performing in parallel, biological tests in laboratory to validate the effectiveness and side effects of the chemical substance. The quantitative study of structure-activity relationship (QSAR) involves building regression models that relate a set of descriptors of a chemical compound and its biological activity with respect to one or more targets in the organism. Datasets manipulated by researchers to QSAR analysis are generally characterized by a small number of instances and this makes it more complex to build predictive models. In this context, the transfer of knowledge using information other\'s QSAR models with more data available to the same biological target would be desirable, nince its reduces the effort and cost to generate models of chemical descriptors. This work presents an inductive learning transfer approach (by parameters), such proposal is based on a variation of the Vector Regression method Adapted support for learning transfer, which is achieved by approaching the separately generated models for each task. It is also considered a method of learning transfer by instances, called TrAdaBoost. Experimental results show that learning transfer approaches perform well when applied to some datasets of benchmark and dataset chemical
Martins, Ulisses Nicola. „Síntese e desenvolvimento de um modelo de QSAR para derivados do (-)-borneol contra larvas de Aedes aegypti“. Universidade Federal de Sergipe, 2016. https://ri.ufs.br/handle/riufs/3945.
Der volle Inhalt der QuelleAedes aegypti is the main transmitter of vector-borne diseases such, dengue, chikungunya and zika. Hence no vaccine exists as well as drugs to reduce viremia, major strategy to prevent these diseases is controlling vector spreading. The main larvicides used are organophosphates and pyrethroids, however the indiscriminate use of these compounds gave rise Ae. aegypti resistant strains. A viable alternative to classic insecticides / larvicides is the phytochemical research of molecules, like terpenoids, component of essential oils of several plants that exhibits larvicidal activity. In this context, the aim of this study was synthetize and evaluate the activity of monoterpene (-)-borneol and twelve derivatives against Ae. aegypti larvae, using QSAR as strategy for discovery of new larvicidal agents. Reactions were carried out by esterification with acid chloride in basic medium, (-)-borneol was modificated in hydroxyl group, changing size and type of the side chain. Compounds synthetized were purified in column chromatography and characterized by NMR ¹³C, ¹H, MS and IR. LC50 was evaluated thought larvicidal assay, in each test, twenty third instar larvae were exposed to various concentrations of derivatives to 24h. From mortality data obtained, LC50 was determined though Probit analysis. The bornylchloroacetate derivative exhibited the best activity (21 ppm), but bornyl heptanoate showed no activity. The physicochemical properties of the derivatives were obtained by GAMESS® module Chem3D Ultra 7.0® software from most stable conformation of the molecule. Descriptor chosen for QSAR study was Log P, since best correlation obtained and especially to be a highly informative parameter to measure influence on the larvicidal activity. Equation was obtained by MiniTab16 ™ software by linear regression between derivatives Log P, and the activity expressed in log (1/LC50). QSAR equation without outliers exhibited quality indexes of r² = 0.944; F = 58.71; q² = 0.8442; Spress = 0.0827, indicating high predictability of the model. It was observed influence of lipophilicity on (-)-borneol derivatives larvicidal activity, suggesting that molecules with Log P value around 4.5 have optimized activity. This study may be used as a basis to guide research of new larvicides candidates.
O mosquito Aedes aegypti é o principal transmissor de doenças de origem viral, como a dengue, chikungunya e zika. Na ausência de recursos específicos como a falta de vacinas e medicamentos eficazes, a principal estratégia para o manejo destas infecções se dá pelo controle do vetor. Os principais agentes utilizados no controle químico são os organofosforados e piretroides, contudo o seu uso indiscriminado fez surgir populações do Ae. aegypti resistentes. Uma alternativa viável a estes inseticidas/larvicidas clássicos é a pesquisa de moléculas fitoquímicas, como as da classe dos terpenoides, presentes nos óleos essenciais de diversas espécies vegetais que já possuem atividade larvicida documentada na literatura. Neste contexto, o objetivo deste trabalho foi sintetizar e avaliar a atividade do monoterpeno (-)-borneol e seus doze derivados frente as larvas do Ae. aegypti, utilizando o QSAR como estratégia de descoberta de novos candidatos a agentes larvicidas. Através da reação de esterificação em meio básico, utilizando cloreto de ácido, o (-)-borneol foi modificado a partir de sua hidroxila alcoólica, variando no tamanho e tipo de cadeia lateral. Os compostos sintetizados foram purificados em coluna cromatográfica e caracterizados por RMN ¹³C e ¹H, EM, e IR. A CL50 foi avaliada através do ensaio larvicida, onde a cada teste 20 larvas em terceiro estádio são expostas por 24h a diferentes concentrações (em triplicata) de composto. A partir dos dados de mortalidade das larvas, a CL50 é obtida com IC 95% pela análise Probit. O derivado cloroacetato de bornila exibiu a maior atividade (21 ppm), já o heptanoato de bornila demonstrou-se inativo. As propriedades físico-químicas dos derivados foram obtidas pelo módulo GAMESS® do programa Chem3D Ultra 7.0® a partir da conformação mais estável da molécula. O descritor escolhido para estudo de QSAR foi o Log P, por apresentar a melhor correlação, e principalmente por ser um parâmetro altamente informativo quanto a sua influência na atividade larvicida. A equação foi calculada pelo software MiniTab16™ através da regressão linear entre o Log P dos derivados e a atividade larvicida expressa em Log (1/CL50). O QSAR obtido sem os compostos outliers apresentou índices de qualidade de r² = 0,944; F = 58,71; q²= 0,8442; SPRESS = 0,0827 indicando alta preditibilidade do modelo. Foi observada a influência da lipofilicidade na atividade larvicida dos derivados do (-)-borneol, sugerindo que moléculas com Log P de aproximadamente 4,5 tem sua atividade otimizada. Este trabalho poderá ser utilizado como base para direcionar o planejamento de novos candidatos a agentes larvicidas.
Geylan, Gökçe. „Training Machine Learning-based QSAR models with Conformal Prediction on Experimental Data from DNA-Encoded Chemical Libraries“. Thesis, Uppsala universitet, Institutionen för farmaceutisk biovetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-447354.
Der volle Inhalt der QuelleBloyet, Nicolas. „Caractérisation et plongement de sous-graphes colorés : application à la construction de modèles structures à activité (QSAR)“. Thesis, Lorient, 2019. http://www.theses.fr/2019LORIS546.
Der volle Inhalt der QuelleIn the field of chemistry, it is interesting to be able to estimate the physicochemical properties of molecules, especially for industrial applications. These are difficult to estimate by physical simulations, as their implementation often present prohibitive time complexity. However, the emergence of data (public or private) opens new perspectives for the treatment of these problems by statistical methods and machine learning. The main difficulty lies in the characterization of molecules: these are more like a network of atoms (in other words a colored graph) than a vector. Unfortunately, statistical modeling methods usually deal with observations encoded as such, hence the need for specific methods able to deal with graphs- encoded observations, called structure-activity relationships. The aim of this thesis is to take advantage of public corpora to learn the best possible representations of these structures, and to transfer this global knowledge to smaller datasets. We adapted methods used in automatic processing of natural languages to achieve this goal. To implement them, more theoretical work was needed, especially on the graph isomorphism problem. The results obtained on classification / regression tasks are at least competitive with the state of the art, and even sometimes better, in particular on restricted data sets, attesting some opportunities for transfer learning in this field
Wang, Fang. „Chlorine Contribution to Quantitative Structure and Activity Relationship Models of Disinfection By-Products' Quantum Chemical Descriptors and Toxicities“. FIU Digital Commons, 2009. http://digitalcommons.fiu.edu/etd/174.
Der volle Inhalt der QuellePedreros, Riquelme América Beatriz. „Diseño racional de antibacterianos de núcleo 8-aril- mercapto-pirimidoisoquinolinquinonas basado en las herramientas de química medicinal de gráfica de craig y modelo 3D-QSAR/COMFA“. Tesis, Universidad de Chile, 2017. http://repositorio.uchile.cl/handle/2250/144766.
Der volle Inhalt der QuelleA lo largo del tiempo, los antibacterianos han sido ampliamente utilizados en el tratamiento y control de enfermedades infecciosas. Actualmente la lucha contra varias enfermedades de origen bacteriano se ha vuelto un problema de salud a nivel mundial, debido a la resistencia bacteriana. Sumado a lo anterior, la tendiente disminución en investigación y desarrollo de nuevos antibacterianos nos insta a destinar los esfuerzos en investigar nuevos compuestos activos, idealmente, frente a bacterias multirresistentes, con una estructura química y mecanismo de acción novedoso. En este sentido la cadena transportadora de electrones, y en particular la ubiquinona aparece como un blanco interesante para el desarrollo de nuevos antibacterianos. Por este motivo nuestro grupo de investigación ha llevado a cabo el desarrollo de derivados isoquinolinquinona activos en bacterias Gram positivo. Sin embargo, los factores que modulan la actividad de estos compuestos no han sido estudiados. De esta forma, el objetivo de este estudio es desarrollar un modelo 3D- QSAR/CoMFA y compararlo con la gráfica de Craig para establecer si estos modelos son útiles para el desarrollo de nuevos compuestos antibacterianos. La metodología CoMFA, la cual mide parámetros estéricos y electrostáticos de cada molécula, indica que el primer parámetro es el principal contribuyente de la actividad de esta familia de compuestos. En contraste, la gráfica de Craig, la cual relaciona la constante de hidrofobicidad y el carácter electrónico de los sustituyentes, entrega como resultado que la actividad de esta serie de compuestos depende principalmente del carácter hidrofóbico del sustituyente. Para validar estos resultados se realizó la síntesis de 8 derivados 8-aril-mercapto-pirimidoisoquinolinquinona, obteniéndose en dos pasos, con rendimientos para la última etapa entre 43% y 89%. Los compuestos obtenidos fueron evaluados para determinar su concentración inhibitoria mínima, en 6 bacterias prototipo. Los resultados muestran que 5 compuestos presentaron actividad en las bacterias Gram positivo ensayadas. Ninguno de los compuestos presento actividad en bacterias Gram negativa. En conclusión, se establece que el empleo de la gráfica de Craig y modelo CoMFA resultaron ser herramientas útiles para el desarrollo de nuevos compuestos antibacterianos de estructura 8-(4’-aril-mercapto)-pirimidoisoquinolinquinonas
Antibacterials have been used in treatment and control of infectious diseases in modern times. Today, the struggle against several diseases with bacterial origins has become a global health problem, due to bacterial resistance. In addition, diminishing research and development trends in antibacterial drugs urges us to focus resources on new active compounds. These should target multi-resistant bacteria with novel chemical structures and action mechanisms. In this sense, the electron transport chain and in particular the ubiquinone seems like an interesting target for new antibacterial developments. For this reason, our research group has conducted the development of active isoquinolinquinone derivatives on gram positive bacteria. However, the research of the factors that modulate the activity of these compounds has not been previously performed. The objective of this research is to develop a CoMFA model and compare it with Craig´s graph to establish the usefulness of these models for the development of new antibacterial compounds. The CoMFA methodology measures steric and electrostatic parameters of each molecule and indicates that the first parameters are the main contributors to the activity of this compound family. In contrast, Craig plot relates the hydrophobic and electronic constants of the substituents. From this plot, as a result of the activity of this compound series, it is derived that the hydrophobic properties of the substituents are the main contributor. To validate these results, eight derivatives of 8-aril-mercapto-pirimidoisoquinolinquinone were synthesized, in two steps, with efficiency between 42.7% and 88.5%. These compounds were evaluated to determine the minimum inhibitory concentration, using six prototype bacteria. The results show that five compounds achieved activity on the tested Gram-positive bacteria. None of these compounds revealed activity on Gram-negative bacteria. In conclusion, it has been stablished that both tools, Craig plot and CoMFA, are useful methods in the development of new antibacterial compounds of 8-(4’-aryl-mercapto)-pyrimidoisoquinolinquinone structure
Olguín, Carlos José Maria. „Modelagem do coeficiente de sorção do solo de poluentes orgânicos persistentes no meio ambiente“. Universidade Estadual do Oeste do Paraná, 2017. http://tede.unioeste.br/handle/tede/3006.
Der volle Inhalt der QuelleMade available in DSpace on 2017-09-04T17:30:26Z (GMT). No. of bitstreams: 2 Carlos_Olguin2017.pdf: 2821259 bytes, checksum: 4f44c019ceff1c4613be9b0b525a188e (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-02-17
The soil sorption coefficient normalized for organic carbon content (Koc) is a physicochemical parameter used in environmental risk assessments to determine the final destination of chemicals released in the environment. So, in oreder to predict this parameter, several models were proposed based on the relationship between LogKoc and LogP. The difficulty and cost to obtain experimental values of LogP have drawn to the algorithms development to calculate those values. Thus, in the first paper of this thesis, several free algorithms were considered to calculate LogP, and it was concluded that the best QSPR models to predict soil sorption coefficient of organic nonionic compounds were obtained using ALOGPs, KOWWIN and XLOGP3 algorithms. This study demonstrated the importance and usefulness of the statistical equivalence test used, since it allowed us to state that the models obtained from the considered algorithms are statistically equivalent. In this study, the both importance and usefulness of the statistical equivalence test were proved. These data allowed us to state that the models that have been obtained from the algorithms are statistically equivalent. Thus, in the impossibility of obtaining LogP values based on one of the algorithms, values obtained by another one of them can be used. It was also observed that the models presented in this study presented statistical quality and predictive capacity compatible with more complex models recently published in the area. In addition, it is a well accepted practice in the area the requirement to validate the prediction of a QSPR model from a data set that was not used in the model generation. In this context, some studies have explored the impact that several sizes of training sets would have on the predictive capacity of the generated QSPR models, consequently not reaching conclusive results. Thus, the second paper has been shown that, from not so large training sets, statistically equivalent QSPR models can be developed and that these models have similar predictive capacity to those ones created from a larger training set. Therefore, models were generated considering LogP values of the total training set, calculated with the ALOGPs algorithm and also with subsets of itself (i.e., halves, quarters and eighths). This study, just like the previous one, has confirmed the importance of using the statistical equivalence test since it was ascertained that, following the adopted procedures, the models obtained with subsets of the training set are statistically equivalent
O coeficiente de sorção do solo normalizado para o conteúdo de carbono orgânico (Koc) é um parâmetro físico-químico utilizado em avaliações de risco ambiental e na determinação do destino final das substâncias químicas lançadas na natureza. Vários modelos para prever este parâmetro foram propostos com base na relação entre LogKoc e LogP. A dificuldade e o custo para a obtenção de valores experimentais de LogP levaram ao desenvolvimento de algoritmos para calculá-los. Assim, no primeiro artigo desta tese foram considerados diversos algoritmos gratuitos para cálculo de LogP, e concluiu-se que os melhores modelos QSPR para predizer o coeficiente de sorção do solo de compostos orgânicos não iónicos foram obtidos usando os algoritmos ALOGPs, KOWWIN e XLOGP3. Neste estudo, foram demonstradas a importância e a utilidade do teste de equivalência estatística utilizado, dados que nos permitiram afirmar que os modelos obtidos dos algoritmos considerados são estatisticamente equivalentes. Assim, na impossibilidade de obterem-se valores de LogP a partir de um dos algoritmos, valores obtidos por outro podem ser usados. Verificou-se ainda que os modelos apresentados neste estudo possuem qualidade estatística e capacidade de predição compatíveis à de modelos mais complexos, publicados recentemente na área. Adicionalmente, a necessidade de se realizar a validação da predição de um modelo QSPR a partir de um conjunto de dados que não foi utilizado na geração do modelo é uma prática bem aceita na área. Nesse contexto, alguns trabalhos exploraram o impacto que diversos tamanhos de conjuntos de treinamento teriam na capacidade de predição dos modelos QSPR gerados, não chegando a resultados conclusivos. Assim, no segundo artigo desta tese, foi mostrado que, a partir de conjuntos de treinamento não tão grandes, modelos QSPR estatisticamente equivalentes podem ser desenvolvidos e que tais modelos têm capacidade de predição similar daqueles criados a partir de um conjunto de treinamento maior. Para isto, modelos foram gerados considerando valores de LogP do conjunto de treinamento total, calculados com o algoritmo ALOGPs e também com subconjuntos do mesmo (i.e., metades, quartos e oitavos). Este estudo, assim como o anterior, confirmou a importância do uso do teste de equivalência estatística utilizado nesta tese já que foi verificado que, seguindo os procedimentos adotados, os modelos obtidos com subconjuntos do conjunto de treinamento são estatisticamente equivalentes.
AbdulHameed, Mohamed Diwan Mohideen. „COMPUTATIONAL DESIGN OF 3-PHOSPHOINOSITIDE DEPENDENT KINASE-1 INHIBITORS AS POTENTIAL ANTI-CANCER AGENTS“. UKnowledge, 2009. http://uknowledge.uky.edu/gradschool_diss/757.
Der volle Inhalt der QuelleDureckova, Hana. „Robust Machine Learning QSPR Models for Recognizing High Performing MOFs for Pre-Combustion Carbon Capture and Using Molecular Simulation to Study Adsorption of Water and Gases in Novel MOFs“. Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/37288.
Der volle Inhalt der QuelleRuark, Christopher Daniel. „The Guinea Pig Model For Organophosphate Toxicology and Therapeutic Development“. Wright State University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=wright1432890247.
Der volle Inhalt der QuelleCypcar, Christopher Charles. „Investigation of structure-property relationships of nylon 6-co-7 and linear alkyl model amide compounds and molecular modeling quantitative structure-property relationship (QSPR) for glass temperature predictions“. Aix-Marseille 3, 1997. http://www.theses.fr/1997AIX30035.
Der volle Inhalt der QuelleMichielan, Lisa. „Advance Methodologies in Linear and Nonlinear Quantitative Structure-Activity Relationships (QSARs): from Drug Design to In Silico Toxicology Applications“. Doctoral thesis, Università degli studi di Padova, 2010. http://hdl.handle.net/11577/3422242.
Der volle Inhalt der QuelleNuove strategie computazionali vengono continuamente richieste dall'industria farmaceutica per assistere, migliorare e velocizzare il processo di scoperta dei farmaci. In questo scenario la chemoinformatica fornisce affidabili strumenti matematici per ottenere relazioni quantitative struttura-attività (QSAR), in grado di descrivere la correlazione tra descrittori molecolari e vari profili sperimentali dei composti. Negli ultimi anni approcci non lineari di machine learning hanno dimostrato una notevole capacità predittiva in diverse applicazioni QSAR, confermando la loro superiorità sulle tradizionali metodologie lineari. E' stata evidenziata particolarmente la praticabilità dell'approccio di classificazione nel risolvere compiti complessi. Inoltre, l'introduzione del concetto di autocorrelazione in chimica permette il confronto strutturale delle molecole attraverso l'uso di una rappresentazione vettoriale di lunghezza fissa che serve da efficace descrittore molecolare. Nella presente tesi abbiamo studiato approfonditamente l'ampia applicabilità e le potenzialità delle strategie QSAR non lineari, soprattutto in combinazione con i descrittori autocorrelati potenziale elettrostatico molecolare proiettato sulla superficie molecolare. Il nostro intento si articola in sei differenti casi studio, che si concentrano su problemi cruciali nei campi della farmacodinamica, farmacocinetica e tossicologia. Il primo caso studio considera la valutazione di una proprietà fisico-chimica, l'energia libera di solvatazione acquosa, che è strettamente connessa con il profilo farmacocinetico e la tossicità dei composti chimici. La nostra discussione in farmacodinamica riguarda la predizione di potenza e selettività di antagonisti del recettore adenosinico umano (hAR). La famiglia del recettore adenosinico appartiene alla famiglia A di GPCR (recettori accoppiati a proteine G), che include quattro diversi sottotipi, cui ci si riferisce come A1, A2A, A2B e A3, ampiamente distribuiti nei tessuti. Si differenziano sia per profilo farmacologico che per effettore cui sono accoppiati. Le intense sintesi esplorativa e valutazione farmacologica hanno lo scopo di scoprire ligandi potenti e selettivi per ogni sottotipo del recettore adenosinico. Nella presente tesi abbiamo considerato diversi derivati pirazolo-triazolo-pirimidinici e xantinici, studiati come promettenti antagonisti del recettore adenosinico. Quindi, un secondo caso studio si focalizza sul confronto e l'applicabilità in parallelo di modelli lineari e non lineari per predire l'affinità di legame di antagonisti del recettore adenosinico A2A umano e trovare un consenso nei risultati di predizione. Gli studi successivi valutano la predizione sia della selettività che dell'affinità di legame ai sottotipi A2AR e A3R combinando strategie di classificazione e regressione, per studiare infine il completo spettro di potenza del recettore adenosinico e il profilo di selettività per i sottotipi hAR mediante l'applicazione di un approccio di classificazione multilabel. Nel campo della farmacocinetica, e più specificamente nella predizione del metabolismo, è coinvolto l'uso di strategie di classificazione multi- e single-label per analizzare la specificità di isoforma di substrati del citocromo P450. I risultati conducono all'identificazione della metodologia appropriata per interpretare la reale informazione sul metabolismo, caratterizzata da xenobiotici potenzialmente trasformati da multiple isoforme del citocromo P450. Come caso studio finale, presentiamo un'indagine in tossicologia computazionale. Le recenti iniziative regolatorie dovute al REACH (Registration, Evaluation, Authorization and Restriction of Chemicals) richiedono l'accertamento ecotossicologico e del rischio dei composti chimici per la sicurezza. La maggiorparte dei correnti protocolli di valutazione è basata su costosi esperimenti animali. Così, gli strumenti chemoinformatici sono caldamente raccomandati per facilitare la caratterizzazione della tossicità di sostanze chimiche. Noi descriviamo una nuova strategia integrata per predire la tossicità acquatica acuta attraverso la combinazione di entrambi i comportamenti tossicocinetico e tossicodinamico dei composti chimici, utilizzando un metodo di classificazione machine learning. L'obbiettivo è assegnare i composti chimici a diversi livelli di tossicità acquatica acuta, fornendo un'appropriata risposta alle nuove esigenze regolatorie. Come validazione preliminare del nostro approccio, due modelli tossicocinetico e tossicodinamico sono stati applicati in serie per esaminare sia il rischio di tossicità acquatica che il modo d'azione di un set di sostanze chimiche con informazione tossicodinamica sconosciuta o incerta, valutandone il potenziale rischio ecologico ed il meccanismo tossico.
Schaal, Wesley. „Computational Studies of HIV-1 Protease Inhibitors“. Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2002. http://publications.uu.se/theses/91-554-5213-2/.
Der volle Inhalt der QuelleDurán, Alcaide Ángel. „Development of high-performance algorithms for a new generation of versatile molecular descriptors. The Pentacle software“. Doctoral thesis, Universitat Pompeu Fabra, 2010. http://hdl.handle.net/10803/7201.
Der volle Inhalt der QuelleEl trabajo que se presenta en esta tesis se ha centrado en el desarrollo de algoritmos de altas prestaciones para la obtención de una nueva generación de descriptores moleculares, con numerosas ventajas con respecto a sus predecesores, adecuados para diversas aplicaciones en el área del diseño de fármacos, y en su implementación en un programa científico de calidad comercial (Pentacle). Inicialmente se desarrolló un nuevo algoritmo de discretización de campos de interacción molecular (AMANDA) que permite extraer eficientemente las regiones de máximo interés. Este algoritmo fue incorporado en una nueva generación de descriptores moleculares independientes del alineamiento, denominados GRIND-2. La rapidez y eficiencia del nuevo algoritmo permitieron aplicar estos descriptores en cribados virtuales. Por último, se puso a punto un nuevo algoritmo de codificación independiente de alineamiento (CLACC) que permite obtener modelos cuantitativos de relación estructura-actividad con mejor capacidad predictiva y mucho más fáciles de interpretar que los obtenidos con otros métodos.
Martínez, Brito Izacar Jesús. „Quantitative structure fate relationships for multimedia environmental analysis“. Doctoral thesis, Universitat Rovira i Virgili, 2010. http://hdl.handle.net/10803/8590.
Der volle Inhalt der QuelleLas propiedades fisicoquímicas de un gran espectro de contaminantes químicos son desconocidas. Esta tesis analiza la posibilidad de evaluar la distribución ambiental de compuestos utilizando algoritmos de aprendizaje supervisados alimentados con descriptores moleculares, en vez de modelos ambientales multimedia alimentados con propiedades estimadas por QSARs. Se han comparado fracciones másicas adimensionales, en unidades logarítmicas, de 468 compuestos entre: a) SimpleBox 3, un modelo de nivel III, propagando valores aleatorios de propiedades dentro de distribuciones estadísticas de QSARs recomendados; y, b) regresiones de vectores soporte (SVRs) actuando como relaciones cuantitativas de estructura y destino (QSFRs), relacionando fracciones másicas con pesos moleculares y cuentas de constituyentes (átomos, enlaces, grupos funcionales y anillos) para compuestos de entrenamiento. Las mejores predicciones resultaron para compuestos de test y validación correctamente localizados dentro del dominio de aplicabilidad de los QSFRs, evidenciado por valores bajos de MAE y valores altos de q2 (en aire, MAE≤0.54 y q2≥0.92; en agua, MAE≤0.27 y q2≥0.92).
Chen, Kuan-Ju, und 陳冠如. „Applying 3D-QSAR technique to construct the pharmacophore model of farnesyltransferase inhibitors“. Thesis, 2008. http://ndltd.ncl.edu.tw/handle/52165476443295609708.
Der volle Inhalt der Quelle國立清華大學
分子醫學研究所
96
Abstract A set of 68 imidazole and cyanophenyl containing farnesyltransferase (FTase) inhibitors were subjected to three-dimensional quantitative structure-activity relationship (3D-QSAR) studies using the comparative molecular field analysis (CoMFA) , comparative molecular similarity indices analysis (CoMSIA), and a pharmacophore building method, the Catalyst program. The structures of these inhibitors were generated theoretically, and the conformations used in the 3D-QSAR studies were defined by docking them into the known structure of FTase binding pocket through GOLD3.1. The models constructed by CoMFA and CoMSIA were found to be conformed to each other and were both fitted in with the property potential surface of FTase active site. These pharmacophore features were also compared with those obtained by the Catalyst program and superimposed on the receptor site of FTase. All of the pharmacophore features are in well agreement with structural characteristics and in accord with each other. In addition, we provided a consensus between CoMSIA and Catalyst help improved the statistical results. The final 3D-QSAR models and the information of the inhibitor–receptor interaction would be guide the design of new drug leads against FTase activity.
Chi-Hung, Tsai. „Applying Support Vector Machines to Protein Disulfide Connectivity Prediction and QSAR Model Construction“. 2006. http://www.cetd.com.tw/ec/thesisdetail.aspx?etdun=U0001-1710200607485500.
Der volle Inhalt der QuelleTsai, Chi-Hung, und 蔡其杭. „Applying Support Vector Machines to Protein Disulfide Connectivity Prediction and QSAR Model Construction“. Thesis, 2006. http://ndltd.ncl.edu.tw/handle/97920504275014104395.
Der volle Inhalt der Quelle國立臺灣大學
資訊工程學研究所
95
Support Vector Machine (SVM) is widely adopted in the field of machine learning and pattern recognition, and recently the application of SVM techniques to bioinformatics is also very promising. In this dissertation, we applied SVM to two important issues in bioinformatics: protein disulfide connectivity prediction and quantitative-structure activity relationship (QSAR) model construction. For disulfide connectivity prediction, we implemented an algorithm which infers pair-wise bonding probability by SVM, and introduced a descriptor which derived from the sequential distance between oxidized cysteines (DOC). From the analysis of prediction, it revealed that the prediction accuracy is improved with the addition of this descriptor DOC. Furthermore, we developed a two-level prediction model to integrate protein local and global information. The experimental results showed that the prediction accuracy is greatly enhanced. These results are compared with those of previous studies, and a prediction web-service is also provided on the internet. For QSAR model construction, we developed an approach to build QSAR models by selecting the hypothetical descriptor pharmacophore (HDP) with generic evolutionary method (GEM) and correlating the descriptors to activities with SVM. Experimental results of 5 public datasets indicated that our approach is comparable to those of previous studies. Additionally, we incorporated k-means and hierarchical clustering methods to cluster compounds into subsets and construct specific QSAR model for each cluster. The experimental results show that compounds with particular structural features are successfully clustered into the same subset, and the prediction accuracy was enhanced using specific models build by these clusters.
Chang, Li-Jen, und 張立人. „Integrating GEMDOCK with GEMPLS and GEMkNN for QSAR model of huAChE and AGHO“. Thesis, 2005. http://ndltd.ncl.edu.tw/handle/26000984055629466054.
Der volle Inhalt der Quelle國立交通大學
生物資訊研究所
93
Molecular docking and quantitative structure activity relationships (QSAR) are the core technologies in computer-aided drug design. These technologies would help to save much time and cost to find out potential leads for the target protein in drug discovery. In this study, we introduced molecular docking tool, GEMDOCK to generate the atom-based protein-ligand interaction profile. We utilized the interaction profile to be descriptor and integrate with GEMPLS and GEMkNN for QSAR model of human acetylcholinesterase (huAChE) and Arthrobacter globiformis histamine oxidase (AGHO). Our method has adopted the atom-based interaction profile of protein-ligand complex to represent the molecular descriptor. The atom-based interaction profile would be used in GEMPLS and GEMkNN to construct the preliminary QSAR models. By collecting the selected feature of preliminary models, we generated the consensus feature set. Finally, the consensus feature set and ligand specific skeleton set were used to generate the final QSAR model and improve the prediction accuracy of model. We have verified our method for QSAR model of human acetylcholinesterase (huAChE). The model shows the leave-one-out cross validation of q2 is 0.818 and the correlation of r2 is 0.781 between the predicted and experimental values. After verifying the utility of our method on huAChE, we applied it to develop a novel QSAR model for Arthrobacter globiformis histamine oxidase (AGHO). This model is the first QSAR model for AGHO, and it shows a correlation of r2 is 0.983 between the predicted values and experimental values. This model has also been employed to a series of substrates and derivatives to probe the relationship between affinities of AGHO and hydrophobicities of ligands (including the length of substitution group and ring size). From QSAR models of AGHO, we discovered a novel substrate, which was called benzylamine and was evaluated by experiments. Experiments show that our QSAR model was capable of predicting with reasonable accuracy even that the activity of novel compounds not included in the original dataset. The successful development of highly predictive QSAR models implies that our method is a robust and useful tool for QSAR models.
Palczewska, Anna Maria, Daniel Neagu und Mick J. Ridley. „Using Pareto points for model identification in predictive toxicology“. Thesis, 2013. http://hdl.handle.net/10454/9709.
Der volle Inhalt der QuellePredictive toxicology is concerned with the development of models that are able to predict the toxicity of chemicals. A reliable prediction of toxic effects of chemicals in living systems is highly desirable in cosmetics, drug design or food protection to speed up the process of chemical compound discovery while reducing the need for lab tests. There is an extensive literature associated with the best practice of model generation and data integration but management and automated identification of relevant models from available collections of models is still an open problem. Currently, the decision on which model should be used for a new chemical compound is left to users. This paper intends to initiate the discussion on automated model identification. We present an algorithm, based on Pareto optimality, which mines model collections and identifies a model that offers a reliable prediction for a new chemical compound. The performance of this new approach is verified for two endpoints: IGC50 and LogP. The results show a great potential for automated model identification methods in predictive toxicology.
Suško, Jurij V. [Verfasser]. „Applicability domain of QSAR models / Iurii Sushko“. 2011. http://d-nb.info/1011026651/34.
Der volle Inhalt der QuellePoiares, João Pedro da Silva Gonçalves. „Development of a QSAR models for the prediction of plasma protein binding“. Master's thesis, 2014. http://hdl.handle.net/10437/5858.
Der volle Inhalt der QuelleOne of the most important factors, affecting the pharmacokinetic profile of a drug is binding to plasma protein. As such, this study aimed at the development of a quantitative structure–activity relationship model, to predict the fraction unbound in plasma (fub) for four species, using artificial neural network ensemble (ANNE). To this end a database of 363 drugs was used, and molecular descriptors were determined. The dataset was divided in two groups, a train and an external validation, to avoid overfitting. The ANNE optimization reduced the descriptors required to determine the fub to 37, and 150 ANN were randomly selected, trained and the optimal configuration was collected. The different ANNE were built by averaging the output values of the selected ANN and the best ANNE was selected. The model created was able to predict, with a small amount of error, the fub values (root mean square error of 0.16798 and 0.193705 for train and test dataset respectively), however, it tends to underestimate this value (mean error of -0.00291 and -0.015780 for train and test dataset respectively). The ANNE interpretation showed that the main characteristics of that affect fub were the molecule charge, size, structure and lipophilic and hydrophilic affinity.
Um dos factores mais influentes na farmacocinética deum fármaco é a ligação às proteínas plasmáticas. Sendo assim, com este estudo pretendeu -se desenvolver um modelo QSAR, para prever facção do fármaco livre no plasma (fub)para quatro espécies, usando um “ensamble ”de redes neuronais (ANNE). Para tal, utilizou –se uma base – de -dados de 363 fármacos, e determinou-se os seus descritores moleculares. Esta base de dados foi dividida em dois grupos, um para treino e outro para validação externa, para evitar “overfitting”. O ANNE foi optimizado, reduzindo o número de descritores para 37, e 150 redes foram aleatoriamente selecionadas, treinadas e a sua configuração optimizada registada. Os diversos ANNE foram obtido através da média aritmética dos valores das redes seleccionadas, e o melhor ANNE foi escolhido. Este modelo foi capaz de prever com um erro reduzido, o valor da fub (erro quadrático médio de 0.16798 e0.193705 para o grupo de treino e teste respectivamente), no entanto tendencialmente subestima o seu valor (erro médio de -0.00291 e -0.015780 para o grupo de treino e teste respectivamente) . A interpretação do modelo permitiu observar que o tamanho da molécula, a sua estrutura, carga, lipofilia e hidrofilia são as características que mais afectam o valor da fub.
„Modelo QSAR de Compuestos Análogos a la Isoniazida y Estudio de la Enzima KatG“. Tesis, Universidad de las Américas Puebla, 2005. http://catarina.udlap.mx/u_dl_a/tales/documentos/lqu/castellanos_u_a/.
Der volle Inhalt der QuellePires, Cristiana Lages. „Permeability through Caco-2 cell monolayers as a model for BBB: implementation and preliminary evaluation using model compounds“. Master's thesis, 2018. http://hdl.handle.net/10316/86489.
Der volle Inhalt der QuelleIn early stages of drug discovery, the capacity of a compound to cross biological membranes is a determining factor in the selection of drug candidates. This is very important in the case of orally administered drugs once they must be absorbed at the gastrointestinal tract in order to reach the target of interest. Compounds targeted to the central nervous system have also to overcome the blood-brain barrier (BBB), which imposes even more constraints on the drug properties.In general, passive permeation is the major route for the intake of drugs across cell membranes, as they are usually not recognized by specific transporters. Additionally, drugs may be substrates of active efflux pumps such as P-glycoprotein, which further limits their effective permeation towards the target tissue/receptor.The use of in vitro models to mimic biological barriers is of extreme importance to evaluate drug‟s bioavailability. The human colon carcinoma cell line Caco-2 is a well characterized in vitro model of the intestinal epithelium for prediction of intestinal drug permeability and oral drug absorption in humans. This model has been thoroughly used by the scientific community and has delivered a large amount of data. Unfortunately, the discrepancy between the permeability coefficients reported by different research groups is very large, often differing by several orders of magnitude. This precludes the use of this information to obtain Quantitative Structure Property Relationships (QSPR) that may be reliably applied to predict drug‟s bioavailability in cells and tissues. Those discrepancies may come from several sources, namely the cell passage number or the experimental conditions used in the permeability assay (particularly the composition of the transport media).In this work we implement in vitro permeability assays using the Caco-2 cell model, for several model drugs. The effect of the presence of serum albumin in the donor/receiver compartment was quantitatively evaluated and rationalized in terms of the free fraction of drug. The apparent permeability coefficient was interpreted taking into account the drug‟s interaction with components of the transport media as well as with the cell membranes, using the kinetic model recently developed in our group.The ultimate goal of this study is the establishment of QSPR, with a view to understand and predict the rate of drug permeation through cell monolayers such as the BBB. With this objective, permeability assays using endothelial cells obtained from Hematopoietic Stem Cells, have been undertaken. Comparison between the results obtained with the two distinct cell models allows a better characterization of the properties of the different biological barriers, and an optimization of the drug‟s properties depending on their target tissue.
Nas fases iniciais do desenvolvimento de fármacos, a capacidade que o composto tem de atravessar as membranas biológicas é um factor determinante na selecção de candidatos a fármaco. Este processo é particularmente relevante no caso de fármacos administrados por via oral, uma vez que estes têm de ser absorvidos ao nível do tracto gastrointestinal para atingirem o alvo de interesse. Compostos direccionados ao sistema nervoso central tem adicionalmente de atravessar a barreira hematoencefálica (BHE), que por sua vez impõe mais restrições às propriedades do fármaco.De uma forma geral, os fármacos permeiam as membranas celulares por processos passivos, uma vez que não são reconhecidos por transportadores específicos. Adicionalmente, os fármacos podem ser substratos de transportadores de efluxo, tais como a glicoproteína-P, o que limita a sua permeação passiva em direcção ao tecido/receptor alvo.O uso de modelos in vitro que mimetizam as membranas biológicas é de extrema importância para avaliar a biodisponibilidade de um fármaco. A linha celular de adenocarcinoma do cólon humano (Caco-2) é um modelo in vitro bem caracterizado do epitélio intestinal, usado para prever a permeabilidade intestinal de fármacos e a sua absorção oral em humanos. Este modelo tem sido extensivamente usado pela comunidade científica dando origem a uma grande quantidade de dados. Infelizmente, a discrepância entre os coeficientes de permeabilidade reportados por diferentes grupos de investigação é enorme, muitas vezes diferindo em várias ordens de grandeza. Isto impede a sua utilização para a obtenção de relações quantitativas estrutura-propriedade (QSRPs) que possam ser aplicadas para prever a biodisponibilidade de fármacos nas células e tecidos. Estas discrepâncias podem surgir de várias fontes, nomeadamente do número de passagem das células ou das condições experimentas usadas no ensaio de permeabilidade (particularmente a composição do meio de transporte).Neste trabalho, implementaram-se ensaios de permeabilidade in vitro usando o modelo Caco-2 para vários compostos. O efeito da presença de albumina nos compartimentos dador/aceitante foi quantitativamente avaliada e racionalizada em termos da fracção de composto livre. Os coeficientes de permeabilidade aparente foram interpretados tendo em conta a interacção do composto com os componentes do meio de transporte bem como com as membranas das células, usando um modelo cinético desenvolvido no grupo.O objectivo último deste trabalho é o estabelecimento de QSRPs com vista a entender e prever a velocidade de permeação através de monocamadas de células, tais como a BHE. Com este objectivo, foram realizados ensaios de permeabilidade em células endoteliais obtidas a partir de células estaminais hematopoéticas. A comparação entre os resultados obtidos nos dois modelos celulares permitirá uma melhor caracterização das propriedades das diferentes membranas biológicas, e uma optimização das propriedades do fármaco tendo em conta o seu tecido alvo.
Wagner, Steffen [Verfasser]. „Sesquiterpenlactone : neuronale Netze als QSAR-Modell sowie pharmakokinetische Untersuchungen am Beispiel von Arnica montana / vorgelegt von Steffen Wagner“. 2006. http://d-nb.info/980669685/34.
Der volle Inhalt der Quelle„Statistical contribution to the virtual multicriteria optimisation of combinatorial molecules libraries and to the validation and application of QSAR models“. Université catholique de Louvain, 2008. http://edoc.bib.ucl.ac.be:81/ETD-db/collection/available/BelnUcetd-01032008-172816/.
Der volle Inhalt der QuellePalczewska, Anna Maria, X. Fu, Paul R. Trundle, Longzhi Yang, Daniel Neagu, Mick J. Ridley und Kim Travis. „Towards model governance in predictive toxicology“. 2013. http://hdl.handle.net/10454/9708.
Der volle Inhalt der QuelleEfficient management of toxicity information as an enterprise asset is increasingly important for the chemical, pharmaceutical, cosmetics and food industries. Many organisations focus on better information organisation and reuse, in an attempt to reduce the costs of testing and manufacturing in the product development phase. Toxicity information is extracted not only from toxicity data but also from predictive models. Accurate and appropriately shared models can bring a number of benefits if we are able to make effective use of existing expertise. Although usage of existing models may provide high-impact insights into the relationships between chemical attributes and specific toxicological effects, they can also be a source of risk for incorrect decisions. Thus, there is a need to provide a framework for efficient model management. To address this gap, this paper introduces a concept of model governance, that is based upon data governance principles. We extend the data governance processes by adding procedures that allow the evaluation of model use and governance for enterprise purposes. The core aspect of model governance is model representation. We propose six rules that form the basis of a model representation schema, called Minimum Information About a QSAR Model Representation (MIAQMR). As a proof-of-concept of our model governance framework we develop a web application called Model and Data Farm (MADFARM), in which models are described by the MIAQMR-ML markup language. (C) 2013 Elsevier Ltd. All rights reserved.
Santos, Rodrigo Daniel Garrilha. „Construction of machine learning models to predict pharmacology properties of molecules“. Master's thesis, 2019. http://hdl.handle.net/10451/41459.
Der volle Inhalt der QuelleO processo de desenvolvimento de drogas é altamente condicionado pela qualidade dos modelos com os quais se realiza a seleção dos primeiros compostos. Este trabalho procurou avaliar vários metodologias e descobrir qual a melhor abordagem para a construção de modelos de QSAR (relação quantitativa estrutura-propriedade/atividade) usando um conjunto grande de problemas. Usando um banco de dados de modelação de problemas desenvolvidos no projeto de pesquisa MIMED, 500 conjunto de dados foram extraídos de forma a serem usados para a construção de modelos QSAR. Quarenta metodologias diferentes, resultantes na combinação de quatro algoritmos de machine learning, dois fingerprints e cinco valores de bits, foram usados para fazer os modelos. Com o uso destas metodologias forma criados 18000 modelos, dos quais após análise surgiu a abordagem que melhor generaliza os modelos. Esta é a combinação dos seguintes parâmetros: random forest without maximum depth com Extended-Connectivity Fingerprints de raio 2 usando 2048 bits. Esta abordagem após validação construiu modelos com valores RMSE (Root Mean Square Error) de 0.17 e valores PVE (Proportion of Variance Explained) de 0.63. Por fim, procurou-se otimizar o processo de construção de modelos QSAR com a utilização da técnica de feature selection. Daqui resultou uma redução no conjunto de variáveis utilizadas pelo algoritmo resultando na construção de modelos mais robustos, mantendo o mesmo desempenho, RMSE de 0.17 e PVE de 0.59. Por fim a metodologia escolhida foi comparada com uma abordagem construída usando KNIME de forma a ter a perceção do fitness dos modelos construídos.
The drug development process is highly conditioned by the quality of the mathematical models with which the first compounds are selected. In this work, we tried to evaluate various methods and find out which are the best parameters for building Quantitative Structure-Activity Relationship (QSAR) models using a large set of problems. Using a database of modelling problems developed within the research project MIMED, 500 datasets were extracted to be used for building QSAR models. Forty different methodologies, resulting from the combination of four machine learning algorithms, two fingerprints and five bit values, were used to make the models. Using these methodologies, 18000 models were created, from which after analysis came the approach that best generalizes the models. This is the combination of the following parameters: random forest without maximum depth with Extended-Connectivity Fingerprints of radius 2 using 2048 bits. This approach after validation builds models with Root Mean Square Error (RMSE) values of 0.17 and Proportion of Variance Explained (PVE) values of 0.63. After the choice of the methodology, we tried to optimize the process of building QSAR models using the feature selection technique. This resulted in a reduction in the set of variables used by the algorithm resulting in the construction of more robust models, maintaining the same performance, RMSE of 0.17 and PVE of 0.59. Finally, the chosen methodology was compared with an approach built using KNIME to have the perception of the fitness of the built models.
Zhang, K., M. H. Abraham und Xiangli Liu. „An Equation for the Prediction of Human Skin Permeability of Neutral Molecules, Ions and Ionic Species“. 2017. http://hdl.handle.net/10454/11486.
Der volle Inhalt der QuelleExperimental values of permeability coefficients, as log Kp, of chemical compounds across human skin were collected by carefully screening the literature, and adjusted to 37 °C for the effect of temperature. The values of log Kp for partially ionized acids and bases were separated into those for their neutral and ionic species, forming a total data set of 247 compounds and species (including 35 ionic species). The obtained log Kp values have been regressed against Abraham solute descriptors to yield a correlation equation with R2 = 0.866 and SD = 0.432 log units. The equation can provide valid predictions for log Kp of neutral molecules, ions and ionic species, with predictive R2 = 0.858 and predictive SD = 0.445 log units calculated by the leave-one-out statistics. The predicted log Kp values for Na+ and Et4N+ are in good agreement with the observed values. We calculated the values of log Kp of ketoprofen as a function of the pH of the donor solution, and found that log Kp markedly varies only when ketoprofen is largely ionized. This explains why models that neglect ionization of permeants still yield reasonable statistical results. The effect of skin thickness on log Kp was investigated by inclusion of two indicator variables, one for intermediate thickness skin and one for full thickness skin, into the above equation. The newly obtained equations were found to be statistically very close to the above equation. Therefore, the thickness of human skin used makes little difference to the experimental values of log Kp.