Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „QSAR Model“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "QSAR Model" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "QSAR Model"
Li, Yan Kun, und Xiao Ying Ma. „QSAR/QSPR Model Research of Complicated Samples“. Advanced Materials Research 740 (August 2013): 306–9. http://dx.doi.org/10.4028/www.scientific.net/amr.740.306.
Der volle Inhalt der QuelleOkey, Robert W., und H. David Stensel. „A QSAR-based biodegradability model—A QSBR“. Water Research 30, Nr. 9 (September 1996): 2206–14. http://dx.doi.org/10.1016/0043-1354(96)00098-x.
Der volle Inhalt der QuelleZhang, Xiujun, H. G. Govardhana Reddy, Arcot Usha, M. C. Shanmukha, Mohammad Reza Farahani und Mehdi Alaeiyan. „A study on anti-malaria drugs using degree-based topological indices through QSPR analysis“. Mathematical Biosciences and Engineering 20, Nr. 2 (2022): 3594–609. http://dx.doi.org/10.3934/mbe.2023167.
Der volle Inhalt der QuelleToropov, Andrey A., und Alla P. Toropova. „The Monte Carlo Method as a Tool to Build up Predictive QSPR/QSAR“. Current Computer-Aided Drug Design 16, Nr. 3 (02.06.2020): 197–206. http://dx.doi.org/10.2174/1573409915666190328123112.
Der volle Inhalt der QuelleMudasir, Mudasir, Iqmal Tahir und Ida Puji Astuti Maryono Putri. „QUANTITATIVE STRUCTURE AND ACTIVITY RELATIONSHIP ANALYSIS OF 1,2,4-THIADIAZOLINE FUNGICIDES BASED ON MOLECULAR STRUCTURE CALCULATED BY AM1 METHOD“. Indonesian Journal of Chemistry 3, Nr. 1 (07.06.2010): 39–47. http://dx.doi.org/10.22146/ijc.21904.
Der volle Inhalt der QuelleSarkar, Bikash Kumar. „DFT Based QSAR Studies of Phenyl Triazolinones of Protoporphyrinogen Oxidase Inhibitors“. Asian Journal of Organic & Medicinal Chemistry 5, Nr. 4 (31.12.2020): 307–11. http://dx.doi.org/10.14233/ajomc.2020.ajomc-p280.
Der volle Inhalt der QuelleRybińska-Fryca, Anna, Anita Sosnowska und Tomasz Puzyn. „Representation of the Structure—A Key Point of Building QSAR/QSPR Models for Ionic Liquids“. Materials 13, Nr. 11 (30.05.2020): 2500. http://dx.doi.org/10.3390/ma13112500.
Der volle Inhalt der QuellePokle, Maithili S., Rashmi D. Singh und Madhura P. Vaidya. „2D QSAR MODEL BASED ON 1,2-DISUBSTITUTED BENZIMIDAZOLES IMPDH INHIBITORS“. Indian Drugs 59, Nr. 04 (01.06.2022): 18–23. http://dx.doi.org/10.53879/id.59.04.13117.
Der volle Inhalt der QuelleBu, Qingwei, Qingshan Li, Yun Liu und Chun Cai. „Performance Comparison between the Specific and Baseline Prediction Models of Ecotoxicity for Pharmaceuticals: Is a Specific QSAR Model Inevitable?“ Journal of Chemistry 2021 (31.10.2021): 1–8. http://dx.doi.org/10.1155/2021/5563066.
Der volle Inhalt der QuelleLIAO, SI YAN, LI QIAN, JIN CAN CHEN, YONG SHEN und KANG CHENG ZHENG. „2D/3D-QSAR STUDY ON ANALOGUES OF 2-METHOXYESTRADIOL WITH ANTICANCER ACTIVITY“. Journal of Theoretical and Computational Chemistry 07, Nr. 02 (April 2008): 287–301. http://dx.doi.org/10.1142/s0219633608003745.
Der volle Inhalt der QuelleDissertationen zum Thema "QSAR Model"
Spreafico, Morena. „Mixed-model QSAR at the glucocorticoid and liver X receptors /“. [S.l.] : [s.n.], 2009. http://edoc.unibas.ch/diss/DissB_8730.
Der volle Inhalt der QuelleBagchi, Bhaskar. „Quantum chemical calculation and structure activity relationship of bioactive terpenoids“. Thesis, University of North Bengal, 2016. http://ir.nbu.ac.in/handle/123456789/2762.
Der volle Inhalt der QuelleRaynaud, Isabelle. „Etude des relations structure-activité quantitatives (QSAR) des cytokinines : synthèse et activité biologique de nouvelles molécules actives“. Angers, 1996. http://www.theses.fr/1996ANGE0022.
Der volle Inhalt der QuelleMazzatorta, Paolo. „Evaluation of pesticide toxicity : a hierarchical QSAR approach to model the acute aquatic toxicity and avian oral toxicity of pesticides“. Thesis, Open University, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.424819.
Der volle Inhalt der QuelleMalazizi, Ladan. „Development of Artificial Intelligence-based In-Silico Toxicity Models. Data Quality Analysis and Model Performance Enhancement through Data Generation“. Thesis, University of Bradford, 2008. http://hdl.handle.net/10454/4262.
Der volle Inhalt der QuelleModa, Tiago Luiz. „Desenvolvimento de modelos in silico de propriedades de ADME para a triagem de novos candidatos a fármacos“. Universidade de São Paulo, 2007. http://www.teses.usp.br/teses/disponiveis/76/76132/tde-22032007-112055/.
Der volle Inhalt der QuelleMolecular modeling tools and quantitative structure-activity relantionships (QSAR) or structure-property (QSPR) are integrated into the drug design process in the search for new bioactive molecules with good pharmacokinetic and pharmacodynamic properties. The Medicinal Chemistry work carried out in this Masters dissertation concerned studies of the quantitative relationshisps between chemical structure and the pharmacokinetic properties oral bioavailability and plasma protein binding. In the present work, standard data sets for bioavailability and plasma protein binding were organized encompassing the structural information and corresponding pharmacokinetic data. The created data sets established the scientific basis for the development of predictive models using the hologram QSAR and VolSurf methods. The final HQSAR and VolSurf models posses high internal and external consistency with good correlative and predictive power. Due to the simplicity, robustness and effectivess, these models are useful guides in Medicinal Chemistry in the early stages of the drug discovery and development process.
MANSOURI, KAMEL. „New molecular descriptors for estimating degradation and fate of organic pollutants by QSAR/QSPR models within reach“. Doctoral thesis, Università degli Studi di Milano-Bicocca, 2013. http://hdl.handle.net/10281/45611.
Der volle Inhalt der QuelleDimitriadis, Spyridon. „Multi-task regression QSAR/QSPR prediction utilizing text-based Transformer Neural Network and single-task using feature-based models“. Thesis, Linköpings universitet, Statistik och maskininlärning, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-177186.
Der volle Inhalt der QuelleSköld, Christian. „Computational Modeling of the AT2 Receptor and AT2 Receptor Ligands : Investigating Ligand Binding, Structure–Activity Relationships, and Receptor-Bound Models“. Doctoral thesis, Uppsala University, Organic Pharmaceutical Chemistry, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-7823.
Der volle Inhalt der QuelleRational conversion of biologically active peptides to nonpeptide compounds with retained activity is an appealing approach in drug development. One important objective of the work presented in this thesis was to use computational modeling to aid in such a conversion of the peptide angiotensin II (Ang II, Asp-Arg-Val-Tyr-Ile-His-Pro-Phe). An equally important objective was to gain an understanding of the requirements for ligand binding to the Ang II receptors, with a focus on interactions with the AT2 receptor.
The bioactive conformation of a peptide can provide important guidance in peptidomimetic design. By designing and introducing well-defined secondary structure mimetics into Ang II the bioactive conformation can be addressed. In this work, both γ- and β-turn mimetic scaffolds have been designed and characterized for incorporation into Ang II. Using conformational analysis and the pharmacophore recognition method DISCO, a model was derived of the binding mode of the pseudopeptide Ang II analogues. This model indicated that the positioning of the Arg side chain was important for AT2 receptor binding, which was also supported when the structure–activity relationship of Ang II was investigated by performing a glycine scan.
To further examine ligand binding, a 3D model of the AT2 receptor was constructed employing homology modeling. Using this receptor model in a docking study of the ligands, binding modes were identified that were in agreement with data from point-mutation studies of the AT2 receptor.
By investigating truncated Ang II analogues, small pseudopeptides were developed that were structurally similar to nonpeptide AT2 receptor ligands. For further guidance in ligand design of nonpeptide compounds, three-dimensional quantitative structure–activity relationship models for AT1 and AT2 receptor affinity as well as selectivity were derived.
Sköld, Christian. „Computational Modeling of the AT2 Receptor and AT2 Receptor Ligands : Investigating Ligand Binding, Structure–Activity Relationships, and Receptor-Bound Models“. Doctoral thesis, Uppsala universitet, Avdelningen för organisk farmaceutisk kemi, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-7823.
Der volle Inhalt der QuelleBücher zum Thema "QSAR Model"
Romualdo, Benigni, Hrsg. Quantitative structure-activity relationship (QSAR) models of mutagens and carcinogens. Boca Raton, Fla: CRC Press, 2003.
Den vollen Inhalt der Quelle findenname, No. Quantitative structure-activity relationship (QSAR) models of mutagens and carcinogens. Boca Raton, FL: CRC Press, 2002.
Den vollen Inhalt der Quelle findenGonzález-Díaz, Humberto. Alignment-free models in plant genomics: Theoretical, experimental and legal issues. New York: Nova Science, 2010.
Den vollen Inhalt der Quelle findenKnaak, James B., Charles Timchalk und Rogelio Tornero-Velez, Hrsg. Parameters for Pesticide QSAR and PBPK/PD Models for Human Risk Assessment. Washington, DC: American Chemical Society, 2012. http://dx.doi.org/10.1021/bk-2012-1099.
Der volle Inhalt der QuelleKnaak, James B., Charles Timchalk und Rogelio Tornero-Velez. Parameters for pesticide QSAR and PBPK/PD models for human risk assessment. Herausgegeben von American Chemical Society und American Chemical Society. Division of Agrochemicals. Washington, DC: American Chemical Society, 2012.
Den vollen Inhalt der Quelle findenPrakash, Gupta Satya, und Bahal R, Hrsg. QSAR and molecular modeling studies in heterocyclic drugs. Berlin: Springer-Verlag, 2006.
Den vollen Inhalt der Quelle findenauthor, Panaye Annick, Hrsg. Three dimensional QSAR: Applications in pharmacology and toxicology. Boca Raton: CRC Press, 2010.
Den vollen Inhalt der Quelle finden1944-, Truhlar Donald G., Hrsg. Rational drug design. New York: Springer, 1999.
Den vollen Inhalt der Quelle findenMartin, Yvonne Connolly. Quantitative drug design: A critical introduction. 2. Aufl. Boca Raton, FL: Taylor & Francis, 2010.
Den vollen Inhalt der Quelle findenMartin, Yvonne Connolly. Quantitative drug design: A critical introduction. 2. Aufl. Boca Raton: CRC Press/Taylor & Francis, 2010.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "QSAR Model"
Johansson, Erik, Lennart Eriksson, Maria Sandberg und Svante Wold. „QSAR Model Validation“. In Molecular Modeling and Prediction of Bioactivity, 271–72. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4141-7_36.
Der volle Inhalt der QuelleGrunewald, Gary L., Niels Skjaerbaek und James A. Monn. „An active site model of phenylethanolamine N-methyltransferase using CoMFA“. In Trends in QSAR and Molecular Modelling 92, 513–16. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1472-1_138.
Der volle Inhalt der QuelleSanz, F., E. López de Briñas, J. Rodríguez und F. Manaut. „Theoretical model for the metabolism of caffeine and its inhibition“. In Trends in QSAR and Molecular Modelling 92, 193–96. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1472-1_29.
Der volle Inhalt der QuelleVrontaki, Eleni, und Antonios Kolocouris. „Pharmacophore Generation and 3D-QSAR Model Development Using PHASE“. In Methods in Molecular Biology, 387–401. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-8630-9_23.
Der volle Inhalt der QuelleRothe, H., und S. Boudon. „An approach to knowledge-based QSAR predictions using the MASCA model“. In Trends in QSAR and Molecular Modelling 92, 502–3. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1472-1_134.
Der volle Inhalt der QuelleOpreaa, Tudor Ionel, Ludovic Kurunczi und Eduard Eli Moret. „Role of the dipole moment during ligand receptor interaction: A hypothetic static model“. In Trends in QSAR and Molecular Modelling 92, 398–99. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1472-1_92.
Der volle Inhalt der QuelleHerbette, Leo G. „A structural model for drug interactions with biological membranes: Hydrophobicity, hydrophilicity and amphiphilicity in drug structures“. In Trends in QSAR and Molecular Modelling 92, 76–85. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1472-1_10.
Der volle Inhalt der QuelleBlankley, C. John, und Andrew D. White. „Lipophilic and electronic factors influencing the activity of a series of urea ACAT inhibitors: Approaches to model specification“. In Trends in QSAR and Molecular Modelling 92, 349–51. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1472-1_73.
Der volle Inhalt der QuelleKemmritz, Kerstin, und Hans-Dieter Höltje. „Theoretical investigations on the interaction of non-steroidal antiphlogistics with a model of the active site of the human prostaglandin endoperoxide synthase (‘cyclooxygenase’)“. In Trends in QSAR and Molecular Modelling 92, 476–77. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1472-1_124.
Der volle Inhalt der QuelleGolani, Mati, und Idit I. Golani. „Neural Network Ensemble Based QSAR Model for the BBB Challenge: A Review“. In Transactions on Engineering Technologies, 55–68. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-7236-5_5.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "QSAR Model"
Boboriko, Natalia, He Liying und Yaraslau Dzichenka. „THE EXPLORATION OF CYP17A1 LIGAND SPACE BY THE QSAR MODEL“. In 1st INTERNATIONAL Conference on Chemo and BioInformatics. Institute for Information Technologies, University of Kragujevac, 2021. http://dx.doi.org/10.46793/iccbi21.439b.
Der volle Inhalt der QuelleMunjal, Nupur S., Narendra Kumar, Manu Sharma und Chittaranjan Rout. „QSAR model development for solubility prediction of Paclitaxel“. In 2016 International Conference on Bioinformatics and Systems Biology (BSB). IEEE, 2016. http://dx.doi.org/10.1109/bsb.2016.7552139.
Der volle Inhalt der QuelleDouali, Latifa. „QSAR model of phenols generated by deep neural network“. In 2020 1st International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET). IEEE, 2020. http://dx.doi.org/10.1109/iraset48871.2020.9092000.
Der volle Inhalt der QuelleDjokovic, Nemanja, Ana Postolovic und Katarina Nikolic. „MOLECULAR MODELING OF 5‐[(AMIDOBENZYL)OXY]‐ NICOTINAMIDES AS SIRTUIN 2 INHIBITORS USING ALIGNMENT- (IN)DEPENDENT 3D-QSAR ANALYSIS AND MOLECULAR DOCKING“. In 1st INTERNATIONAL Conference on Chemo and BioInformatics. Institute for Information Technologies, University of Kragujevac, 2021. http://dx.doi.org/10.46793/iccbi21.410dj.
Der volle Inhalt der QuelleRagno, Rino, und Alessio Ragno. „db.3d-qsar.com. The first 3D QSAR models database“. In 2nd International Conference on Chemo and Bioinformatics. Institute for Information Technologies, University of Kragujevac, 2023. http://dx.doi.org/10.46793/iccbi23.051r.
Der volle Inhalt der Quelle„Application of machine learning models to predict ecotoxicity of ionic liquids (Vibrio fischeri) using VolSurf principal properties“. In Sustainable Processes and Clean Energy Transition. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902516-27.
Der volle Inhalt der QuelleConcu, Riccardo, und Maria Natalia Dias Soeiro Cordeiro. „A novel QSAR model to predict epidermial growth factor inhibitors“. In MOL2NET 2018, International Conference on Multidisciplinary Sciences, 4th edition. Basel, Switzerland: MDPI, 2018. http://dx.doi.org/10.3390/mol2net-04-05261.
Der volle Inhalt der QuelleUlfa, Adawiyah, Alhadi Bustamam, Arry Yanuar, Rizka Amalia und Prasnurzaki Anki. „Model QSAR Classification Using Conv1D-LSTM of Dipeptidyl Peptidase-4 Inhibitors“. In 2021 International Conference on Artificial Intelligence and Mechatronics Systems (AIMS). IEEE, 2021. http://dx.doi.org/10.1109/aims52415.2021.9466083.
Der volle Inhalt der QuelleWang, Dan, Junjie Wang, Chaochao Yang und Yongqiang Ren. „Simulating QSAR Model of ERa Bioactivity by Statistics and Machine Learning“. In ACM ICEA '21: 2021 ACM International Conference on Intelligent Computing and its Emerging Applications. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3491396.3506514.
Der volle Inhalt der QuelleLevovnik, Bojan D., Aleksa P. Alargić, Miloš M. Svirčev und Goran I. Benedeković. „Building a 3D QSAR model with isopropylidene analogs of cytotoxic styryl-lactones“. In 2nd International Conference on Chemo and Bioinformatics. Institute for Information Technologies, University of Kragujevac, 2023. http://dx.doi.org/10.46793/iccbi23.559l.
Der volle Inhalt der Quelle