Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: QED de cavité.

Zeitschriftenartikel zum Thema „QED de cavité“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "QED de cavité" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Lechner, Daniel, Riccardo Pennetta, Martin Blaha, Philipp Schneeweiss, Jürgen Volz und Arno Rauschenbeutel. „Experimental investigation of light-matter interaction when transitioning from cavity QED to waveguide QED“. EPJ Web of Conferences 266 (2022): 11006. http://dx.doi.org/10.1051/epjconf/202226611006.

Der volle Inhalt der Quelle
Annotation:
Cavity quantum electrodynamics (cavity QED) is conventionally described by the Jaynes- or Tavis-Cummings model, where quantum emitters couple to a single-mode cavity. The opposite scenario, in which an ensemble of emitters couples to a single spatial mode of a propagating light field, is described by waveguide QED, where emitters interact with a continuum of frequency modes. Here we present an experiment where an ensemble of cold atoms strongly couples to a fiber-ring resonator with variable length containing an optical nanofiber. By changing the length of the resonator we can tailor the density of frequency modes and thus explore the transition from cavity QED to waveguide QED. We analyse the response of the ensemble–cavity system after the sudden switch-on of resonant laser light and find that for progressively longer resonators, the Rabi oscillations typical of cavity QED disappear and the single-pass dynamics of waveguide QED appear. Our measurements shed light on the interplay between the single-pass collective response of the atoms to the propagating cavity field and the ensemble–cavity dynamics.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Zhang Lei, 张蕾. „基于腔QED制备三粒子singlet态“. Laser & Optoelectronics Progress 58, Nr. 23 (2021): 2327002. http://dx.doi.org/10.3788/lop202158.2327002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

YE, LIU, und GUANG-CAN GUO. „ENTANGLEMENT CONCENTRATION AND A QUANTUM REPEATER IN CAVITY QED“. International Journal of Quantum Information 03, Nr. 02 (Juni 2005): 351–57. http://dx.doi.org/10.1142/s0219749905001018.

Der volle Inhalt der Quelle
Annotation:
A scheme of quantum concentration for unknown atomic entangled states via cavity QED is proposed. During the preparation and the joint measurement of quantum states, the cavity is only virtually excited; thus, the scheme is insensitive to the cavity field states and the cavity decay. In the meanwhile, our setup also provides a demonstration of a quantum repeater in cavity QED in principle.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

YANG, ZHEN, WEN-HAI ZHANG und LIU YE. „SCHEME TO IMPLEMENT THE OPTIMAL ASYMMETRIC ECONOMICAL 1 → 2 PHASE-COVARIANT TELECLONING VIA CAVITY-QED“. International Journal of Quantum Information 06, Nr. 02 (April 2008): 317–23. http://dx.doi.org/10.1142/s0219749908003426.

Der volle Inhalt der Quelle
Annotation:
We propose an experimentally feasible scheme to implement the optimal asymmetric economical 1 → 2 phase-covariant telecloning, which works without ancilla, based on Cavity-QED. Our scheme is insensitive to the cavity field states and cavity decay. During the telecloning process, the cavity is only virtually excited, thus it greatly prolongs the efficient decoherent time. Therefore, the scheme can be experimentally realized in the range of current cavity QED techniques.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Wang, Yahong, und Changshui Yu. „Minimum remote state preparation of an arbitrary two-level one-atom state via cavity QED“. International Journal of Quantum Information 13, Nr. 02 (März 2015): 1550009. http://dx.doi.org/10.1142/s0219749915500094.

Der volle Inhalt der Quelle
Annotation:
In this paper, we propose three schemes for remotely state preparation (RSP) an arbitrary two-level one-atom state via cavity quantum electro dynamics (QED) with minimal resources consumption. In the first case, a Greenberger–Horne–Zeilinger (GHZ) state is used as quantum channel; in the second case, the sender needs to construct an quantum channel with both of the assistant of cavity QED and the knowledge about the state to be remotely prepared. In each scheme, only 1 cbit and 1 ebit are needed with the aid of cavity QED. In the third case, we combine the first two protocols and give a theoretical proposal for controlled RSP with only 2 cbits and 1 ebit resources consumption.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

XUE, ZHENG-YAUN, PING DONG, YOU-MIN YI und ZHUO-LIANG CAO. „QUANTUM STATE SHARING VIA THE GHZ STATE IN CAVITY QED WITHOUT JOINT MEASUREMENT“. International Journal of Quantum Information 04, Nr. 05 (Oktober 2006): 749–59. http://dx.doi.org/10.1142/s0219749906002201.

Der volle Inhalt der Quelle
Annotation:
We investigate schemes to securely distribute and reconstruct single-qubit and two-qubit arbitrary quantum states between two parties via tripartite GHZ states in cavity QED without joint measurement. Our schemes offer a simple way of demonstrating quantum state sharing in cavity QED. We also consider the generalization of our schemes to distribute and reconstruct a quantum state among many parties.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

LIU, CHUAN-LONG, YAN-WEI WANG und YI-ZHUANG ZHENG. „IMPLEMENTATION OF NON-LOCAL TOFFOLI GATE VIA CAVITY QUANTUM ELECTRODYNAMICS“. International Journal of Quantum Information 07, Nr. 03 (April 2009): 669–80. http://dx.doi.org/10.1142/s0219749909003329.

Der volle Inhalt der Quelle
Annotation:
A scheme for realizing the non-local Toffoli gate among three spatially separated nodes through cavity quantum electrodynamics (C-QED) is presented. The scheme can obtain high fidelity in the current C-QED system. With entangled qubits as quantum channels, the operation is resistive to actual environment noise.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Said, Taoufik, Abdelhaq Chouikh, Karima Essammouni und Mohamed Bennai. „Realizing an N-two-qubit quantum logic gate in a cavity QED with nearest qubit--qubit interaction“. Quantum Information and Computation 16, Nr. 5&6 (April 2016): 465–82. http://dx.doi.org/10.26421/qic16.5-6-4.

Der volle Inhalt der Quelle
Annotation:
We propose an effective way for realizing a three quantum logic gates (NTCP gate, NTCP-NOT gate and NTQ-NOT gate) of one qubit simultaneously controlling N target qubits based on the qubit-qubit interaction. We use the superconducting qubits in a cavity QED driven by a strong microwave field. In our scheme, the operation time of these gates is independent of the number N of qubits involved in the gate operation. These gates are insensitive to the initial state of the cavity QED and can be used to produce an analogous CNOT gate simultaneously acting on N qubits. The quantum phase gate can be realized in a time (nanosecond-scale) much smaller than decoherence time and dephasing time (microsecond-scale) in cavity QED. Numerical simulation under the influence of the gate operations shows that the scheme could be achieved efficiently within current state-of-the-art technology.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Chang, D. E., L. Jiang, A. V. Gorshkov und H. J. Kimble. „Cavity QED with atomic mirrors“. New Journal of Physics 14, Nr. 6 (01.06.2012): 063003. http://dx.doi.org/10.1088/1367-2630/14/6/063003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Imamoglu, Atac. „Cavity-QED Using Quantum Dots“. Optics and Photonics News 13, Nr. 8 (01.08.2002): 22. http://dx.doi.org/10.1364/opn.13.8.000022.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Le Thomas, N., U. Woggon, O. Schöps, M. V. Artemyev, M. Kazes und U. Banin. „Cavity QED with Semiconductor Nanocrystals“. Nano Letters 6, Nr. 3 (März 2006): 557–61. http://dx.doi.org/10.1021/nl060003v.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Haroche, S. „Mesoscopic coherences in cavity QED“. Il Nuovo Cimento B 110, Nr. 5-6 (Mai 1995): 545–56. http://dx.doi.org/10.1007/bf02741464.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

González, Joanna, und Miguel Orszag. „Quantum Cloning and Cavity QED“. Open Systems & Information Dynamics 11, Nr. 04 (Dezember 2004): 377–83. http://dx.doi.org/10.1007/s11080-004-6628-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Gerry, Christopher C. „Cavity QED analog of spin“. Journal of Modern Optics 44, Nr. 11-12 (November 1997): 2159–71. http://dx.doi.org/10.1080/09500349708231876.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Prants, S. V., und M. Yu Uleysky. „Quantum instability in cavity QED“. Journal of Experimental and Theoretical Physics Letters 82, Nr. 12 (Dezember 2005): 748–52. http://dx.doi.org/10.1134/1.2175242.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Lange, Wolfgang, und Jean-Michel Gerard. „Focus section on Cavity QED“. Journal of Optics B: Quantum and Semiclassical Optics 6, Nr. 2 (01.02.2004): 117–18. http://dx.doi.org/10.1088/1464-4266/6/2/e03.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Haroche, S. „Entanglement experiments in cavity QED“. Fortschritte der Physik 51, Nr. 45 (07.05.2003): 388–95. http://dx.doi.org/10.1002/prop.200310052.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

ZHANG, WEN–HAI, LIU YE und JIE-LIN DAI. „SCHEME TO IMPLEMENT GENERAL PHASE-COVARIANT QUANTUM CLONING“. International Journal of Quantum Information 04, Nr. 05 (Oktober 2006): 761–68. http://dx.doi.org/10.1142/s0219749906002262.

Der volle Inhalt der Quelle
Annotation:
We propose an experimentally feasible scheme to implement the optimal general 1→2 phase-covariant quantum cloning machine based on cavity QED. In the scheme, the cavity is only virtually excited and thus the scheme is insensitive to the cavity field states and cavity decay.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Li, Ming, Wei Chen und Junli Gao. „A Coherence Preservation Control Strategy in Cavity QED Based on Classical Quantum Feedback“. Scientific World Journal 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/340917.

Der volle Inhalt der Quelle
Annotation:
For eliminating the unexpected decoherence effect in cavity quantum electrodynamics (cavity QED), the transfer function of Rabi oscillation is derived theoretically using optical Bloch equations. In particular, the decoherence in cavity QED from the atomic spontaneous emission is especially considered. A feedback control strategy is proposed to preserve the coherence through Rabi oscillation stabilization. In the scheme, a classical quantum feedback channel for the quantum information acquisition is constructed via the quantum tomography technology, and a compensation system based on the root locus theory is put forward to suppress the atomic spontaneous emission and the associated decoherence. The simulation results have proved its effectiveness and superiority for the coherence preservation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

NOH, CHANGSUK, und DIMITRIS G. ANGELAKIS. „SIMULATING TOPOLOGICAL EFFECTS WITH PHOTONS IN COUPLED QED CAVITY ARRAYS“. International Journal of Modern Physics B 28, Nr. 02 (15.12.2013): 1441003. http://dx.doi.org/10.1142/s0217979214410033.

Der volle Inhalt der Quelle
Annotation:
We provide a pedagogical account of an early proposal realizing fractional quantum Hall effect (FQHE) using coupled quantum electrodynamics (QED) cavity arrays (CQCAs). We start with a brief introduction on the basics of quantum Hall effects and then review the early proposals in the simulation of spin-models and fractional quantum Hall (FQH) physics with photons in coupled atom-cavity arrays. We calculate the energy gap and the overlap between the ground state of the system and the corresponding Laughlin wavefunction to analyze the FQH physics arising in the system and discuss possibilities to reach the ground state using adiabatic methods used in Cavity QED.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Wineland, David, J. Ignacio Cirac und Richard Jozsa. „Editorial Note“. Quantum Information and Computation 1, Nr. 2 (August 2001): 1–2. http://dx.doi.org/10.26421/qic1.2-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

XIONG, WEI, TAO WU und LIU YE. „REALIZATION OF NONLOCAL QUANTUM GATE THROUGH ASSISTED-CAVITIES“. International Journal of Quantum Information 10, Nr. 02 (März 2012): 1250011. http://dx.doi.org/10.1142/s0219749912500116.

Der volle Inhalt der Quelle
Annotation:
We propose a scheme for implementing a three-qubit controlled-Not-Not (CNNOT) gate and a two-qubit SWAP gate between atoms and single-photon pulse through cavity QED. In the scheme, we can one-step realize multiple-qubit GHZ state and two-qubit Bell state by applying multiple-qubits CNNOT gate. We have also shown that our scheme would be robust against practical imperfections in current cavity QED experiment setup through simple numerical estimates. Finally, we provide the current parameters to show that our scheme is feasible.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Tarallo, Marco G. „Toward a quantum-enhanced strontium optical lattice clock at INRIM“. EPJ Web of Conferences 230 (2020): 00011. http://dx.doi.org/10.1051/epjconf/202023000011.

Der volle Inhalt der Quelle
Annotation:
The new strontium atomic clock at INRIM seeks to establish a new frontier in quantum measurement by joining state-of-the-art optical lattice clocks and the quantized electromagnetic field provided by a cavity QED setup. The goal of our experiment is to apply advanced quantum techniques to state-of-the-art optical lattice clocks, demonstrating enhanced sensitivity while preserving long coherence times and the highest accuracy. In this paper we describe the current status of the experiment and the prospected sensitivity gain for the designed cavity QED setup.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

YANG, MING, YOU-MING YI und ZHUO-LIANG CAO. „SCHEME FOR PREPARATION OF W STATE VIA CAVITY QED“. International Journal of Quantum Information 02, Nr. 02 (Juni 2004): 231–35. http://dx.doi.org/10.1142/s021974990400016x.

Der volle Inhalt der Quelle
Annotation:
In this paper, we presented a physical scheme to generate the multi-cavity maximally entangled W state via cavity QED. All the operations needed in this scheme are to modulate the interaction time only once.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Yuge, Tatsuro, Kenji Kamide, Makoto Yamaguchi und Tetsuo Ogawa. „Cavity-Loss Induced Plateau in Coupled Cavity QED Array“. Journal of the Physical Society of Japan 83, Nr. 12 (15.12.2014): 123001. http://dx.doi.org/10.7566/jpsj.83.123001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Ye, Liu, und Guang-Can Guo. „Transferring a cavity field entangled state in cavity QED“. Journal of Optics B: Quantum and Semiclassical Optics 7, Nr. 8 (11.07.2005): 212–14. http://dx.doi.org/10.1088/1464-4266/7/8/002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Mabuchi, H., M. Armen, B. Lev, M. Loncar, J. Vuckovic, H. J. Kimble, J. Preskill, M. Roukes, A. Scherer und S. J. van Enk. „Quantum networks based on cavity QED“. Quantum Information and Computation 1, Special (Dezember 2001): 7–12. http://dx.doi.org/10.26421/qic1.s-3.

Der volle Inhalt der Quelle
Annotation:
We review an ongoing program of interdisciplinary research aimed at developing hardware and protocols for quantum communication networks. Our primary experimental goals are to demonstrate quantum state mapping from storage/processing media (internal states of trapped atoms) to transmission media (optical photons), and to investigate a nanotechnology paradigm for cavity QED that would involve the integration of magnetic microtraps with photonic bandgap structures.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Bastarrachea-Magnani, Miguel Angel, Baldemar López-del-Carpio, Jorge Chávez-Carlos, Sergio Lerma-Hernández und Jorge G. Hirsch. „Regularity and chaos in cavity QED“. Physica Scripta 92, Nr. 5 (19.04.2017): 054003. http://dx.doi.org/10.1088/1402-4896/aa6640.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Rice, P. R., J. Gea-Banacloche, M. L. Terraciano, D. L. Freimund und L. A. Orozco. „Steady State Entanglement in Cavity QED“. Optics Express 14, Nr. 10 (2006): 4514. http://dx.doi.org/10.1364/oe.14.004514.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Larson, J. „Wave packet methods in cavity QED“. Journal of Physics: Conference Series 99 (01.02.2008): 012011. http://dx.doi.org/10.1088/1742-6596/99/1/012011.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Bužek, V., G. Drobný, M. S. Kim, G. Adam und P. L. Knight. „Cavity QED with cold trapped ions“. Physical Review A 56, Nr. 3 (01.09.1997): 2352–60. http://dx.doi.org/10.1103/physreva.56.2352.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Spehner, D., und M. Orszag. „Quantum jump dynamics in cavity QED“. Journal of Mathematical Physics 43, Nr. 7 (Juli 2002): 3511–37. http://dx.doi.org/10.1063/1.1476392.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Hughes, Stephen, Marten Richter und Andreas Knorr. „Quantized pseudomodes for plasmonic cavity QED“. Optics Letters 43, Nr. 8 (11.04.2018): 1834. http://dx.doi.org/10.1364/ol.43.001834.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Orszag, Miguel, Nellu Ciobanu, Raul Coto und Vitalie Eremeev. „Quantum correlations in cavity QED networks“. Journal of Modern Optics 62, Nr. 8 (18.07.2014): 593–607. http://dx.doi.org/10.1080/09500340.2014.940020.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Ye, Tian-Yu. „Quantum Private Comparison via Cavity QED“. Communications in Theoretical Physics 67, Nr. 2 (Februar 2017): 147. http://dx.doi.org/10.1088/0253-6102/67/2/147.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Semião, F. L. „Single-mode two-channel cavity QED“. Journal of Physics B: Atomic, Molecular and Optical Physics 41, Nr. 8 (03.04.2008): 081004. http://dx.doi.org/10.1088/0953-4075/41/8/081004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Aqil, Muhammad, Aarouj, Fauzia Bano und Farhan Saif. „Engineering noon states in cavity QED“. Journal of Russian Laser Research 31, Nr. 4 (Juli 2010): 343–49. http://dx.doi.org/10.1007/s10946-010-9154-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

van Enk, S. J., H. J. Kimble und H. Mabuchi. „Quantum Information Processing in Cavity-QED“. Quantum Information Processing 3, Nr. 1-5 (Oktober 2004): 75–90. http://dx.doi.org/10.1007/s11128-004-3104-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Bruneau, L., und C. A. Pillet. „Thermal Relaxation of a QED Cavity“. Journal of Statistical Physics 134, Nr. 5-6 (09.12.2008): 1071–95. http://dx.doi.org/10.1007/s10955-008-9656-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Esfandiarpour, Saeideh, Hassan Safari und Stefan Yoshi Buhmann. „Cavity-QED interactions of several atoms“. Journal of Physics B: Atomic, Molecular and Optical Physics 52, Nr. 8 (04.04.2019): 085503. http://dx.doi.org/10.1088/1361-6455/aaf6d7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Eleuch, H., J. M. Courty, G. Messin, C. Fabre und E. Giacobino. „Cavity QED effects in semiconductor microcavities“. Journal of Optics B: Quantum and Semiclassical Optics 1, Nr. 1 (01.01.1999): 1–7. http://dx.doi.org/10.1088/1464-4266/1/1/001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Doherty, A. C., A. S. Parkins, S. M. Tan und D. F. Walls. „Effects of motion in cavity QED“. Journal of Optics B: Quantum and Semiclassical Optics 1, Nr. 4 (01.08.1999): 475–82. http://dx.doi.org/10.1088/1464-4266/1/4/320.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Spehner, D., und M. Orszag. „Temperature-enhanced squeezing in cavity QED“. Journal of Optics B: Quantum and Semiclassical Optics 4, Nr. 5 (30.08.2002): 326–35. http://dx.doi.org/10.1088/1464-4266/4/5/315.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Mielke, S. L., G. T. Foster und L. A. Orozco. „Nonclassical Intensity Correlations in Cavity QED“. Physical Review Letters 80, Nr. 18 (04.05.1998): 3948–51. http://dx.doi.org/10.1103/physrevlett.80.3948.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Jabri, H., und H. Eleuch. „Bunching and Antibunching in Cavity QED“. Communications in Theoretical Physics 56, Nr. 1 (Juli 2011): 134–38. http://dx.doi.org/10.1088/0253-6102/56/1/23.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Rfifi, Saad, und Fatimazahra Siyouri. „Effect of Cavity QED on Entanglement“. Foundations of Physics 46, Nr. 11 (23.06.2016): 1461–70. http://dx.doi.org/10.1007/s10701-016-0024-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Ye, Tian-Yu. „Secure Quantum Dialogue via Cavity QED“. International Journal of Theoretical Physics 54, Nr. 3 (25.07.2014): 772–79. http://dx.doi.org/10.1007/s10773-014-2268-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Vogel, W., und C. Di Fidio. „Cavity QED with a trapped ion“. Fortschritte der Physik 51, Nr. 23 (03.03.2003): 242–48. http://dx.doi.org/10.1002/prop.200310034.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Nayak, N., Biplab Ghosh und A. S. Majumdar. „Environment induced entanglement in cavity-QED“. Indian Journal of Physics 84, Nr. 8 (August 2010): 1039–50. http://dx.doi.org/10.1007/s12648-010-0098-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Yin-Ju, Lu. „Quantum Secret Sharing via Cavity QED“. International Journal of Theoretical Physics 59, Nr. 10 (15.09.2020): 3324–28. http://dx.doi.org/10.1007/s10773-020-04591-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie