Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „QED de cavité“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "QED de cavité" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "QED de cavité"
Lechner, Daniel, Riccardo Pennetta, Martin Blaha, Philipp Schneeweiss, Jürgen Volz und Arno Rauschenbeutel. „Experimental investigation of light-matter interaction when transitioning from cavity QED to waveguide QED“. EPJ Web of Conferences 266 (2022): 11006. http://dx.doi.org/10.1051/epjconf/202226611006.
Der volle Inhalt der QuelleZhang Lei, 张蕾. „基于腔QED制备三粒子singlet态“. Laser & Optoelectronics Progress 58, Nr. 23 (2021): 2327002. http://dx.doi.org/10.3788/lop202158.2327002.
Der volle Inhalt der QuelleYE, LIU, und GUANG-CAN GUO. „ENTANGLEMENT CONCENTRATION AND A QUANTUM REPEATER IN CAVITY QED“. International Journal of Quantum Information 03, Nr. 02 (Juni 2005): 351–57. http://dx.doi.org/10.1142/s0219749905001018.
Der volle Inhalt der QuelleYANG, ZHEN, WEN-HAI ZHANG und LIU YE. „SCHEME TO IMPLEMENT THE OPTIMAL ASYMMETRIC ECONOMICAL 1 → 2 PHASE-COVARIANT TELECLONING VIA CAVITY-QED“. International Journal of Quantum Information 06, Nr. 02 (April 2008): 317–23. http://dx.doi.org/10.1142/s0219749908003426.
Der volle Inhalt der QuelleWang, Yahong, und Changshui Yu. „Minimum remote state preparation of an arbitrary two-level one-atom state via cavity QED“. International Journal of Quantum Information 13, Nr. 02 (März 2015): 1550009. http://dx.doi.org/10.1142/s0219749915500094.
Der volle Inhalt der QuelleXUE, ZHENG-YAUN, PING DONG, YOU-MIN YI und ZHUO-LIANG CAO. „QUANTUM STATE SHARING VIA THE GHZ STATE IN CAVITY QED WITHOUT JOINT MEASUREMENT“. International Journal of Quantum Information 04, Nr. 05 (Oktober 2006): 749–59. http://dx.doi.org/10.1142/s0219749906002201.
Der volle Inhalt der QuelleLIU, CHUAN-LONG, YAN-WEI WANG und YI-ZHUANG ZHENG. „IMPLEMENTATION OF NON-LOCAL TOFFOLI GATE VIA CAVITY QUANTUM ELECTRODYNAMICS“. International Journal of Quantum Information 07, Nr. 03 (April 2009): 669–80. http://dx.doi.org/10.1142/s0219749909003329.
Der volle Inhalt der QuelleSaid, Taoufik, Abdelhaq Chouikh, Karima Essammouni und Mohamed Bennai. „Realizing an N-two-qubit quantum logic gate in a cavity QED with nearest qubit--qubit interaction“. Quantum Information and Computation 16, Nr. 5&6 (April 2016): 465–82. http://dx.doi.org/10.26421/qic16.5-6-4.
Der volle Inhalt der QuelleChang, D. E., L. Jiang, A. V. Gorshkov und H. J. Kimble. „Cavity QED with atomic mirrors“. New Journal of Physics 14, Nr. 6 (01.06.2012): 063003. http://dx.doi.org/10.1088/1367-2630/14/6/063003.
Der volle Inhalt der QuelleImamoglu, Atac. „Cavity-QED Using Quantum Dots“. Optics and Photonics News 13, Nr. 8 (01.08.2002): 22. http://dx.doi.org/10.1364/opn.13.8.000022.
Der volle Inhalt der QuelleDissertationen zum Thema "QED de cavité"
De, Santis Lorenzo. „Single photon generation and manipulation with semiconductor quantum dot devices“. Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS034/document.
Der volle Inhalt der QuelleQuantum phenomena can nowadays be engineered to realize fundamentally new applications. This is the field of quantum technology, which holds the promise of revolutionizing computation, communication and metrology. By encoding the information in quantum mechanical systems, it appears to be possible to solve classically intractable problems, achieve absolute security in distant communications and beat the classical limits for precision measurements. Single photons as quantum information carriers play a central role in this field, as they can be easily manipulated and can be used to implement many quantum protocols. A key aspect is the interfacing between photons and matter quantum systems, a fundamental operation both for the generation and the readout of the photons. This has been driving a lot of research toward the realization of efficient atom-cavity systems, which allows the deterministic and reversible transfer of the information between the flying photons and the optical transition of a stationary atom. The realization of such systems in the solid-state gives the possibility of fabricating integrated and scalable quantum devices. With this objective, in this thesis work, we study the light-matter interface provided by a single semiconductor quantum dot, acting as an artificial atom, deterministically coupled to a micropillar cavity. Such a device is shown to be an efficient emitter and receiver of single photons, and is used to implement basic quantum functionalities.First, under resonant optical excitation, the device is shown to act as a very bright source of single photons. The strong acceleration of the spontaneous emission in the cavity and the electrical control of the structure, allow generating highly indistinguishable photons with a record brightness. This new generation of single photon sources can be used to generate path entangled NOON states. Such entangled states are important resources for sensing application, but their full characterizatiob has been scarcely studied. We propose here a novel tomography method to fully characterize path entangled N00N state and experimentally demonstrate the method to derive the density matrix of a two-photon path entangled state. Finally, we study the effect of the quantum dot-cavity device as a non-linear filter. The optimal light matter interface achieved here leads to the observation of an optical nonlinear response at the level of a single incident photon. This effect is used to demonstrate the filtering of single photon Fock state from classical incident light pulses. This opens the way towards the realization of efficient photon-photon effective interactions in the solid state, a fundamental step to overcome the limitations arising from the probabilistic operations of linear optical gates that are currently employed in quantum computation and communication
Diniz, Igor. „Quantum electrodynamics in superconducting artificial atoms“. Thesis, Grenoble, 2012. http://www.theses.fr/2012GRENY048/document.
Der volle Inhalt der QuelleCette thèse porte sur deux problèmes théoriques d'électrodynamique quantique en circuits supraconducteurs. Nous avons d'abord étudié les conditions d'obtention du couplage fort entre un résonateur et une distribution continue d'émetteurs élargie de façon inhomogène. Le développement de ce formalisme est fortement motivé par les récentes propositions d'utiliser des ensembles de degrés de liberté microscopiques pour réaliser des mémoires quantiques. En effet, ces systèmes bénéficient du couplage collectif au résonateur, tout en conservant les propriétés de relaxation d'un seul émetteur. Nous discutons l'influence de l'élargissement inhomogène sur l'existence et les propriétés de cohérence des pics polaritoniques obtenus dans le régime de couplage fort. Nous constatons que leur cohérence dépend de façon critique de la forme de la distribution et pas uniquement de sa largeur. En tenant compte de l'élargissement inhomogène, nous avons pu simuler avec une grande précision de nombreux résultats expérimentaux pionniers sur un ensemble de centres NV. La modélisation s'est révélée un outil puissant pour obtenir les propriétés des ensembles de spins couplés à un résonateur. Nous proposons également une méthode originale de mesure de l'état de qubits Josephson fondée sur un SQUID DC avec une inductance de boucle élevée. Ce système est décrit par un atome artificiel avec des niveaux d'énergie en forme de diamant où nous définissons les qubits logique et ancilla couplés entre eux par un terme Kerr croisé. En fonction de l'état du qubit logique, l'ancilla est couplée de manière résonante ou dispersive au résonateur, ce qui provoque un contraste important dans l'amplitude du signal micro-onde transmis par le résonateur. Les simulations montrent que cette méthode originale peut être plus rapide et peut aussi avoir une plus grande fidélité que les méthodes actuellement utilisées dans la communauté des circuits supraconducteurs
Srivastava, Vineesha. „Entanglement generation and quantum gates with quantum emitters in a cavity“. Electronic Thesis or Diss., Strasbourg, 2024. http://www.theses.fr/2024STRAF069.
Der volle Inhalt der QuelleThis thesis presents novel protocols for non-local multi-qubit quantum gates and entanglement generation in systems where multiple quantum emitters interact with a shared bosonic mode. It introduces the Geometric and Adiabatic Phase Gates, with closed-form infidelity expressions scaling with qubit number and cooperativity. For two qubits, these form a universal gate set, while in multi-qubit systems, they enable deterministic gates for quantum simulation and quantum error correction. A key contribution is an entanglement-enhanced sensing protocol that achieves high measurement precision via optimal control. The thesis also examines a cavity polariton blockade mechanism for non-local W-state generation and multi-qubit gates. These deterministic multi-qubit operations rely only on classical cavity drives and, in some cases, global qubit pulses, providing a scalable foundation for quantum computing, sensing, and the future quantum internet, especially for neutral atom systems
Diniz, Igor. „Electrodynamique quantique des les atomes artificiels supraconducteurs“. Phd thesis, Université de Grenoble, 2012. http://tel.archives-ouvertes.fr/tel-00771451.
Der volle Inhalt der QuelleMartini, Ullrich. „Cavity QED with many atoms“. Diss., [S.l.] : [s.n.], 2000. http://deposit.ddb.de/cgi-bin/dokserv?idn=963141449.
Der volle Inhalt der QuelleBoozer, Allen David Kimble H. Jeff. „Raman transitions in cavity QED /“. Diss., Pasadena, Calif. : California Institute of Technology, 2005. http://resolver.caltech.edu/CaltechETD:etd-05272005-160246.
Der volle Inhalt der QuelleBirnbaum, Kevin Michael Kimble H. Jeff. „Cavity QED with multilevel atoms /“. Diss., Pasadena, Calif. : California Institute of Technology, 2005. http://resolver.caltech.edu/CaltechETD:etd-05272005-103306.
Der volle Inhalt der QuelleNorthup, Tracy Eleanor Kimble H. Jeff Kimble H. Jeff. „Coherent control in cavity QED /“. Diss., Pasadena, Calif. : California Institute of Technology, 2008. http://resolver.caltech.edu/CaltechETD:etd-05242008-114227.
Der volle Inhalt der QuelleBrama, Elisabeth. „Ion trap cavity system for strongly coupled cavity-QED“. Thesis, University of Sussex, 2013. http://sro.sussex.ac.uk/id/eprint/45218/.
Der volle Inhalt der QuelleAlqahtani, Moteb M. „Multi-photon processes in cavity QED“. Thesis, University of Sussex, 2014. http://sro.sussex.ac.uk/id/eprint/49632/.
Der volle Inhalt der QuelleBücher zum Thema "QED de cavité"
Putz, Stefan. Circuit Cavity QED with Macroscopic Solid-State Spin Ensembles. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66447-7.
Der volle Inhalt der QuelleVučković, Jelena. Quantum optics and cavity QED with quantum dots in photonic crystals. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198768609.003.0008.
Der volle Inhalt der QuelleThoumany, Pierre. Optical spectroscopy and cavity QED experiments with Rydberg atoms. 2011.
Den vollen Inhalt der Quelle findenPutz, Stefan. Circuit Cavity QED with Macroscopic Solid-State Spin Ensembles. Springer, 2017.
Den vollen Inhalt der Quelle findenPutz, Stefan. Circuit Cavity QED with Macroscopic Solid-State Spin Ensembles. Springer, 2018.
Den vollen Inhalt der Quelle findenJones, Bobby L. Monte Carlo study of a single atom cavity QED laser. 1995.
Den vollen Inhalt der Quelle findenPandey, Deepak. Fiber-Based Optical Resonators: Cavity QED, Resonator Design and Technological Applications. de Gruyter GmbH, Walter, 2022.
Den vollen Inhalt der Quelle findenPandey, Deepak. Fiber-Based Optical Resonators: Cavity QED, Resonator Design and Technological Applications. de Gruyter GmbH, Walter, 2022.
Den vollen Inhalt der Quelle findenPandey, Deepak. Fiber-Based Optical Resonators: Cavity QED, Resonator Design and Technological Applications. de Gruyter GmbH, Walter, 2022.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "QED de cavité"
Meystre, P. „Cavity QED“. In Springer Series on Wave Phenomena, 26–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-84206-1_3.
Der volle Inhalt der QuelleLange, W., Q. A. Turchette, C. J. Hood, H. Mabuchi und H. J. Kimble. „Optical Cavity QED“. In Microcavities and Photonic Bandgaps: Physics and Applications, 443–56. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0313-5_41.
Der volle Inhalt der QuelleVollmer, Frank, und Deshui Yu. „Molecular Cavity QED“. In Biological and Medical Physics, Biomedical Engineering, 345–83. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60235-2_7.
Der volle Inhalt der QuellePuri, Ravinder Rupchand. „Dissipative Cavity QED“. In Springer Series in Optical Sciences, 251–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-540-44953-9_14.
Der volle Inhalt der QuelleVollmer, Frank, und Deshui Yu. „Molecular Cavity QED“. In Optical Whispering Gallery Modes for Biosensing, 399–446. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-06858-4_7.
Der volle Inhalt der QuellePutz, Stefan. „Spins in the Cavity—Cavity QED“. In Circuit Cavity QED with Macroscopic Solid-State Spin Ensembles, 25–49. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66447-7_3.
Der volle Inhalt der QuelleLange, W., Q. A. Turchette, C. Hood, H. Mabuchi und H. J. Kimble. „Flying Qubits in Cavity QED“. In Coherence and Quantum Optics VII, 345–46. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-9742-8_46.
Der volle Inhalt der QuelleHaroche, Serge, und Jean-Michel Raimond. „Bohr’s Legacy in Cavity QED“. In Niels Bohr, 1913-2013, 103–46. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-14316-3_5.
Der volle Inhalt der QuelleRaizen, M. G., R. J. Thompson, R. J. Brecha, H. J. Kimble und H. J. Carmichael. „Modulation Spectroscopy and Cavity QED“. In Springer Proceedings in Physics, 176–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74951-3_17.
Der volle Inhalt der QuelleMeystre, Pierre. „Tailoring the Environment—Cavity QED“. In Quantum Optics, 187–228. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76183-7_7.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "QED de cavité"
Wong, Yu-En, Adam Johnston, Ulises Felix-Rendon und Songtao Chen. „Enhanced Light-Matter Interactions for a Single T Center in a Silicon Nanocavity“. In CLEO: Fundamental Science, FTu3I.4. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_fs.2024.ftu3i.4.
Der volle Inhalt der QuelleHensley, Hagan, Braden Larsen und James K. Thompson. „Hot Atoms and Light Cooperating“. In Frontiers in Optics, JTu5A.39. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/fio.2024.jtu5a.39.
Der volle Inhalt der QuelleKanneworff, Kirsten N., Petr Steindl, Mio T. L. Poortvliet und Wolfgang Löffler. „Photon Quantum Interference for Quantum Position Verification with Four Detectors“. In Quantum 2.0, QW2B.6. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/quantum.2024.qw2b.6.
Der volle Inhalt der QuelleTorres, Juan Mauricio. „Quantum Operations Assisted by Multiphoton and Multiphonon States“. In Latin America Optics and Photonics Conference, M3B.2. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/laop.2024.m3b.2.
Der volle Inhalt der QuelleTziperman, Offek, Ron Ruimy, Alexey Gorlach und Ido Kaminer. „Creating Entanglement Through a Joint Decay Channel“. In CLEO: Fundamental Science, FTu3O.4. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_fs.2024.ftu3o.4.
Der volle Inhalt der QuelleSahu, Subrat, Kali P. Nayak und Rajan Jha. „One-sided Slotted Photonic Crystal Nanofiber for Cavity QED“. In CLEO: Applications and Technology, JW2A.63. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_at.2024.jw2a.63.
Der volle Inhalt der QuelleSahu, Subrat, Kali P. Nayak und Rajan Jha. „Single-Sided Cavity QED Effect on an Optical Nanowire“. In Frontiers in Optics, JW5A.6. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/fio.2024.jw5a.6.
Der volle Inhalt der QuelleMeystre, Pierre. „Cavity QED“. In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/oam.1989.wr1.
Der volle Inhalt der QuelleKono, Junichiro. „Ultrastrong Light-Matter Coupling in a High-Q Terahertz Cavity“. In JSAP-OSA Joint Symposia. Washington, D.C.: Optica Publishing Group, 2017. http://dx.doi.org/10.1364/jsap.2017.7a_a409_1.
Der volle Inhalt der QuelleLai, H. M., P. T. Leung, S. Y. Liu und K. Young. „Cavity QED in microdroplets“. In 1992 Shanghai International Symposium on Quantum Optics, herausgegeben von Yuzhu Wang, Yiqiu Wang und Zugeng Wang. SPIE, 1992. http://dx.doi.org/10.1117/12.140324.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "QED de cavité"
Wang, Hailin. Cavity QED of NV Centers in Diamond Nanopillars. Fort Belvoir, VA: Defense Technical Information Center, März 2012. http://dx.doi.org/10.21236/ada557808.
Der volle Inhalt der QuelleVuckovic, Jelena. Quantum Dot-Photonic Crystal Cavity QED Based Quantum Information Processing. Fort Belvoir, VA: Defense Technical Information Center, August 2012. http://dx.doi.org/10.21236/ada576255.
Der volle Inhalt der QuelleStamper-Kurn, Dan M. Operation and On-Chip Integration of Cavity-QED-Based Detectors for Single Atoms and Molecules. Fort Belvoir, VA: Defense Technical Information Center, Mai 2010. http://dx.doi.org/10.21236/ada523323.
Der volle Inhalt der QuelleSercel, Peter C. High Resolution Optical Spectroscopy of Single Quantum Dots and Cavity-QED Effects and Lasing in Quantum Dot Microdisk Resonator Structures. Fort Belvoir, VA: Defense Technical Information Center, Dezember 2000. http://dx.doi.org/10.21236/ada391380.
Der volle Inhalt der Quelle