Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Pyruvate mitochondrial“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Pyruvate mitochondrial" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Pyruvate mitochondrial"
HILDYARD, John C. W., und Andrew P. HALESTRAP. „Identification of the mitochondrial pyruvate carrier in Saccharomyces cerevisiae“. Biochemical Journal 374, Nr. 3 (15.09.2003): 607–11. http://dx.doi.org/10.1042/bj20030995.
Der volle Inhalt der QuelleTang, Bor Luen. „Targeting the Mitochondrial Pyruvate Carrier for Neuroprotection“. Brain Sciences 9, Nr. 9 (18.09.2019): 238. http://dx.doi.org/10.3390/brainsci9090238.
Der volle Inhalt der QuelleZangari, Joséphine, Francesco Petrelli, Benoît Maillot und Jean-Claude Martinou. „The Multifaceted Pyruvate Metabolism: Role of the Mitochondrial Pyruvate Carrier“. Biomolecules 10, Nr. 7 (17.07.2020): 1068. http://dx.doi.org/10.3390/biom10071068.
Der volle Inhalt der QuelleReiter, Russel, Ramaswamy Sharma, Sergio Rosales-Corral, Walter Manucha, Luiz Gustavo de Almeida Chuffa und Debora Aparecida Pires de Campos Zuccari. „Melatonin and Pathological Cell Interactions: Mitochondrial Glucose Processing in Cancer Cells“. International Journal of Molecular Sciences 22, Nr. 22 (19.11.2021): 12494. http://dx.doi.org/10.3390/ijms222212494.
Der volle Inhalt der QuelleMoyes, C. D., L. T. Buck, P. W. Hochachka und R. K. Suarez. „Oxidative properties of carp red and white muscle“. Journal of Experimental Biology 143, Nr. 1 (01.05.1989): 321–31. http://dx.doi.org/10.1242/jeb.143.1.321.
Der volle Inhalt der QuelleSimard, Chloé, Andréa Lebel, Eric Pierre Allain, Mohamed Touaibia, Etienne Hebert-Chatelain und Nicolas Pichaud. „Metabolic Characterization and Consequences of Mitochondrial Pyruvate Carrier Deficiency in Drosophila melanogaster“. Metabolites 10, Nr. 9 (06.09.2020): 363. http://dx.doi.org/10.3390/metabo10090363.
Der volle Inhalt der QuelleVALENTI, Daniela, Lidia de BARI, Anna ATLANTE und Salvatore PASSARELLA. „l-Lactate transport into rat heart mitochondria and reconstruction of the l-lactate/pyruvate shuttle“. Biochemical Journal 364, Nr. 1 (08.05.2002): 101–4. http://dx.doi.org/10.1042/bj3640101.
Der volle Inhalt der QuelleFernandez-Caggiano, Mariana, und Philip Eaton. „Heart failure—emerging roles for the mitochondrial pyruvate carrier“. Cell Death & Differentiation 28, Nr. 4 (20.01.2021): 1149–58. http://dx.doi.org/10.1038/s41418-020-00729-0.
Der volle Inhalt der QuelleDiers, Anne R., Katarzyna A. Broniowska, Ching-Fang Chang und Neil Hogg. „Pyruvate fuels mitochondrial respiration and proliferation of breast cancer cells: effect of monocarboxylate transporter inhibition“. Biochemical Journal 444, Nr. 3 (29.05.2012): 561–71. http://dx.doi.org/10.1042/bj20120294.
Der volle Inhalt der QuelleLi, Min, Shuang Zhou, Chaoyang Chen, Lingyun Ma, Daohuang Luo, Xin Tian, Xiu Dong, Ying Zhou, Yanling Yang und Yimin Cui. „Therapeutic potential of pyruvate therapy for patients with mitochondrial diseases: a systematic review“. Therapeutic Advances in Endocrinology and Metabolism 11 (Januar 2020): 204201882093824. http://dx.doi.org/10.1177/2042018820938240.
Der volle Inhalt der QuelleDissertationen zum Thema "Pyruvate mitochondrial"
Hildyard, John Carl Westgarth. „Identification of the mitochondrial pyruvate carrier“. Thesis, University of Bristol, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.410146.
Der volle Inhalt der QuelleMcGow, Donna. „Cloning and characterisation of the plant pyruvate dehydrogenase complex components“. Thesis, University of Glasgow, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.248232.
Der volle Inhalt der QuelleCollins, Yvonne. „Regulation of pyruvate dehydrogenase kinase 2 by mitochondrial reactive oxygen species“. Thesis, University of Cambridge, 2015. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708470.
Der volle Inhalt der QuelleNemani, Neeharika. „Molecular Determinant of Mitochondrial Shape Change“. Diss., Temple University Libraries, 2018. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/511170.
Der volle Inhalt der QuellePh.D.
Mitochondria shape cytosolic Ca2+ (cCa2+) transients. Ca2+ entry into the mitochondria is driven by the highly negative mitochondrial membrane potential and through a highly selective channel, the Mitochondrial Calcium Uniporter (MCU). Mitochondrial Ca2+ (mCa2+) is utilized by the matrix dehydrogenases for maintaining cellular bioenergetics. The TCA cycle-derived NADH and FADH2 are mCa2+ dependent thus, feed into the electron transport chain (ETC) to generate ATP. Either loss of mCa2+ or metabolite uptake by the mitochondria results in a bioenergetic crisis and mitochondrial dysfunction. Reciprocally, sudden elevation of cCa2+ under conditions of stroke or ischemia/reperfusion injury (I/R) drives excessive mCa2+ overload that in turn leads to the opening of a large channel, the mitochondrial permeability transition pore (PTP) that triggers necrotic cell death. Thus, Ca2+ and metabolite equilibrium is essential to maintain a healthy mitochondrial pool. Our laboratory has previously showed that loss of mCa2+ uptake leads to decreased ATP generation and cell survival through autophagy. Although metabolite scarcity also results in similar reduction in ATP generation, the molecular mechanisms by which metabolites control mitochondrial ion homeostasis remain elusive. Deprivation of glucose or supplementation of mitochondrial pyruvate carrier (MPC) transport blocker UK5099 and or carnitine-dependent fatty acid blocker etomoxir triggered an increase in the expression of MICU1, a regulator of the mitochondrial calcium uniporter (MCU) but not the MCU core subunit. Consistently, either RNAi-mediated deletion of MPC isoforms or dominant negative human mutant MPC1 R97W showed significant induction of MICU1 protein abundance and inhibition of MCU-mediated mCa2+ uptake. Moreover, TCA cycle substrate-dependent MICU1 expression is under the control of EGR1 transcriptional regulation. Reciprocally, the MICU1 dependent inhibition of mCa2+ uptake exhibited lower NADH production and oxygen consumption and ATP production. The reduction of mitochondrial pyruvate by MPC knockdown is linked to higher production of mitochondrial ROS and elevated autophagy markers. These studies reveal an unexpected regulation of MCU-mediated mCa2+ flux machinery involving major TCA cycle substrate availability and possibly MICU1 to control cellular switch between glycolysis and oxidative phosphorylation. While mCa2+ is required for energy generation, sustained elevation of mCa2+ results in mitochondrial swelling and necrotic death. Hence, it was thought that preventing mCa2+ overload can be protective under conditions of elevated cCa2+. Contrary to this, mice knocked-out for MCU, that demonstrated no mCa2+ uptake and hence no mitochondrial swelling, however failed protect cells from I/R- mediated cell death. MCU-/- animals showed a similar infarct size comparable to that of control animals, suggesting that prevention of MCU-mediated mCa2+ overload alone is not sufficient to protect cells from Ca2+ -induced necrosis. The absence of mCa2+ entry revealed an elevation in the upstream cCa2+ transients in hepatocytes from MCUDHEP. Ultra-structural analysis of liver sections from MCU-/- (MCUDHEP) and MCUfl/fl animals revealed stark contrast in the shape of mitochondria: MCUfl/fl liver sections showed long and filamentous mitochondria (spaghetti-like) while MCUDHEP mitochondria were short and circular (donut-like). Furthermore, challenging MCUfl/fl and MCUDHEP hepatocytes with ionomycin caused a marked increase in cCa2+ and a simultaneous change in mitochondrial shape (from spaghetti to donut), a phenomenon we termed mitochondrial shape transition (MiST) that was independent of mitochondrial swelling. The cCa2+-mediated MiST is induced by an evolutionarily conserved mitochondrial surface EF-hand domain containing Miro1. Glutamate and Ca2+ -stress driven cCa2+ mobilization cause MiST in neurons that is suppressed by expression of Miro1 EF1 mutants. Miro1-dependent MiST is essential for autophagosome formation that is attenuated in cells harboring Miro1 EF1 mutants. Remarkably, loss of cCa2+ sensitization by Miro1 prevented MiST and mitigated autophagy. These results demonstrate that an interplay of ions and metabolites function in concert to regulate mitochondrial shape that in turn dictates the diverse mitochondrial processes from ATP generation to determining mechanisms of cell death.
Temple University--Theses
Oonthonpan, Lalita. „Two human Mitochondrial Pyruvate Carrier mutations reveal distinct mechanisms of molecular pathogenesis“. Diss., University of Iowa, 2019. https://ir.uiowa.edu/etd/7006.
Der volle Inhalt der QuelleThelen, Jay J. „Purification, characterization and molecular analysis of the mitochondrial pyruvate dehydrogenase complex from maize /“. free to MU campus, to others for purchase, 1998. http://wwwlib.umi.com/cr/mo/fullcit?p9901296.
Der volle Inhalt der QuelleGhosh, Kakoli. „Molecular characterisation and expression of the E1#alpha# gene of the mitochondrial pyruvate dehydrogenase complex from potato“. Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.297938.
Der volle Inhalt der QuelleBaggetto, Loris Gilbert. „Déviations métaboliques et génomiques mitochondriales dans les cellules tumorales glycolytiques AS30-D et Ehrlich : voie de l'acétoïne“. Lyon 1, 1991. http://www.theses.fr/1991LYO10014.
Der volle Inhalt der QuelleSingh, Geetanjali. „Analysis of genetic mutations using a recombinant model of the mammalian pyruvate dehydrogenase complex“. Thesis, Thesis restricted. Connect to e-thesis to view abstract, 2008. http://theses.gla.ac.uk/214/.
Der volle Inhalt der QuellePh.D. thesis submitted to the Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, 2008. Includes bibliographical references. Print version also available.
Phelps, Anne. „Structural and functional studies on two mitochondrial proteins : the pyruvate dehydrogenase complex and the phosphate carrier“. Thesis, University of Glasgow, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.305594.
Der volle Inhalt der QuelleBücher zum Thema "Pyruvate mitochondrial"
MacPherson, Laura Lynn. Adaptations of skeletal muscle pyruvate dehydrogenase kinase in response to food-restriction in mitochondrial subpopulations. St. Catharines, Ont: Brock University, Faculty of Applied Health Sciences, 2007.
Den vollen Inhalt der Quelle findenKeogh, Adrian Colin. Anti-mitochondrial antigen on human biliary epithelial cells [: A study of membrane expression of dihydrolipoamide acetyltransferase sub unit of pyruvate dehydrogenase on human biliary epithelial cells]. Birmingham: University of Birmingham, 2001.
Den vollen Inhalt der Quelle findenSherwood, Dennis, und Paul Dalby. The bioenergetics of living cells. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198782957.003.0024.
Der volle Inhalt der QuelleBuchteile zum Thema "Pyruvate mitochondrial"
Marsac, C., D. François, F. Fouque und C. Benelli. „Pyruvate Dehydrogenase Deficiencies“. In Mitochondrial Diseases, 173–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-59884-5_13.
Der volle Inhalt der QuelleGray, Lawrence R., Alix A. J. Rouault, Lalita Oonthonpan, Adam J. Rauckhorst, Julien A. Sebag und Eric B. Taylor. „Measuring Mitochondrial Pyruvate Oxidation“. In Neuromethods, 321–38. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6890-9_16.
Der volle Inhalt der QuelleMiernyk, Jan A., Barbara J. Rapp, Nancy R. David und Douglas D. Randall. „Higher Plant Mitochondrial Pyruvate Dehydrogenase Complexes“. In Plant Mitochondria, 189–97. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4899-3517-5_31.
Der volle Inhalt der QuelleDeBrosse, Suzanne D., und Douglas S. Kerr. „Pyruvate Dehydrogenase Complex Deficiencies“. In Mitochondrial Disorders Caused by Nuclear Genes, 301–17. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3722-2_19.
Der volle Inhalt der QuelleMiernyk, Jan A., und Douglas D. Randall. „Some Properties of Plant Mitochondrial Pyruvate Dehydrogenase Kinases“. In Plant Mitochondria, 223–26. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4899-3517-5_38.
Der volle Inhalt der QuelleHansford, Richard G., Rafael Moreno-Sánchez und James Staddon. „Regulation of Respiration and Pyruvate Dehydrogenase in Isolated Cardiac Myocytes and Hepatocytes“. In Integration of Mitochondrial Function, 235–44. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4899-2551-0_21.
Der volle Inhalt der QuelleNałęcz, Katarzyna A. „The Mitochondrial Pyruvate Carrier: The Mechanism of Substrate Binding“. In Molecular Biology of Mitochondrial Transport Systems, 67–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-78936-6_6.
Der volle Inhalt der QuelleTrijbels, Frans J. M., Wim Ruitenbeek, Marjan Huizing, Udo Wendel, Jan A. M. Smeitink und Rob C. A. Sengers. „Defects in the mitochondrial energy metabolism outside the respiratory chain and the pyruvate dehydrogenase complex“. In Detection of Mitochondrial Diseases, 243–47. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-6111-8_38.
Der volle Inhalt der QuelleZaleski, Jan, Małgorzata Zaleska und Maria Erecinska. „Possible Role of Membrane-Enzyme Interactions in Activation of Pyruvate Carboxylation and Decarboxylation in Mitochondria“. In Integration of Mitochondrial Function, 325–32. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4899-2551-0_29.
Der volle Inhalt der QuelleVary, Thomas C., Wiley W. Souba und Christopher J. Lynch. „Regulation of Pyruvate and Amino Acid Metabolism“. In Mitochondria, 117–50. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-69945-5_5.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Pyruvate mitochondrial"
Birch, Jodie, und Joao Passos. „The mitochondrial pyruvate carrier: a role in senescence and the ageing lung?“ In ERS International Congress 2017 abstracts. European Respiratory Society, 2017. http://dx.doi.org/10.1183/1393003.congress-2017.oa4439.
Der volle Inhalt der QuelleCeribelli, Angela, Natasa Isailovic, Carolina Gorlino, Elena Generali, Maria De Santis, Giacomo Maria Guidelli, Marta Caprioli, Piercarlo Sarzi-Puttini, Minoru Satoh und Carlo Selmi. „FRI0316 SERUM ANTI-MITOCHONDRIAL ANTIBODIES IN SYSTEMIC SCLEROSIS RECOGNIZE VARIABLE PYRUVATE DEHYDROGENASE COMPLEX ANTIGENS“. In Annual European Congress of Rheumatology, EULAR 2019, Madrid, 12–15 June 2019. BMJ Publishing Group Ltd and European League Against Rheumatism, 2019. http://dx.doi.org/10.1136/annrheumdis-2019-eular.6733.
Der volle Inhalt der QuelleLe, Ha Xuyen. „MPC1 is an important component of the mitochondrial pyruvate import complex in Arabidopsis thaliana“. In ASPB PLANT BIOLOGY 2020. USA: ASPB, 2020. http://dx.doi.org/10.46678/pb.20.1053434.
Der volle Inhalt der QuelleBamberger, A., M. Szibor, F. N. Gellerich, T. Doenst und M. Schwarzer. „Calcium-Controlled Cytosolic Pyruvate Supply Is Essential to Adjust Mitochondrial OXPHOS to Cardiac Power“. In 52nd Annual Meeting of the German Society for Thoracic and Cardiovascular Surgery (DGTHG). Georg Thieme Verlag KG, 2023. http://dx.doi.org/10.1055/s-0043-1761688.
Der volle Inhalt der QuelleCevatemre, B., E. Dere und E. Ulukaya. „PO-197 A possible link between the mitochondrial gatekeeper pyruvate dehydrogenase enzyme complex and EMT“. In Abstracts of the 25th Biennial Congress of the European Association for Cancer Research, Amsterdam, The Netherlands, 30 June – 3 July 2018. BMJ Publishing Group Ltd, 2018. http://dx.doi.org/10.1136/esmoopen-2018-eacr25.233.
Der volle Inhalt der QuelleBader, David A., Nagireddy Putluri, Sean M. Hartig und Sean E. McGuire. „Abstract 5431: Androgen receptor regulates the mitochondrial pyruvate carrier to fuel oncometabolism in prostate cancer“. In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-5431.
Der volle Inhalt der QuelleSolst, Shane R., Samuel N. Rodman, Melissa A. Fath, Eric B. Taylor und Douglas R. Spitz. „Abstract 3527: Inhibition of mitochondrial pyruvate transport selectively sensitizes cancer cells to metabolic oxidative stress“. In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-3527.
Der volle Inhalt der QuelleChung, Tae-Wook, Taro Hitosugi, Jun Fan, Xu Wang, Ting-Lei Gu, Johannes L. Roesel, Titus Boggon et al. „Abstract 1257: Tyrosine phosphorylation of mitochondrial pyruvate dehydrogenase kinase 1 is important for cancer metabolism“. In Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.am2011-1257.
Der volle Inhalt der QuelleFarook, MR Yasim, D. Gonzalez, M. Sheldon und J. Cronin. „PO-257 Loss of the mitochondrial pyruvate carrier drives ‘glutamine addiction’, a hallmark of aggressive ovarian cancers“. In Abstracts of the 25th Biennial Congress of the European Association for Cancer Research, Amsterdam, The Netherlands, 30 June – 3 July 2018. BMJ Publishing Group Ltd, 2018. http://dx.doi.org/10.1136/esmoopen-2018-eacr25.289.
Der volle Inhalt der QuelleJaitin, Diego, Leanne Sayles, Tereza Goliazova, Nicholas Denko und Alejandro Sweet-Cordero. „Abstract 1000: Oncogenic Kras inhibits mitochondrial metabolism by regulating the pyruvate dehydrogenase complex under conditions of nutrient stress“. In Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-1000.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Pyruvate mitochondrial"
Or, Etti, David Galbraith und Anne Fennell. Exploring mechanisms involved in grape bud dormancy: Large-scale analysis of expression reprogramming following controlled dormancy induction and dormancy release. United States Department of Agriculture, Dezember 2002. http://dx.doi.org/10.32747/2002.7587232.bard.
Der volle Inhalt der Quelle