Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Pyrroline-5-carboxylate“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Pyrroline-5-carboxylate" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Pyrroline-5-carboxylate"
Merrill, M. J., G. C. Yeh und J. M. Phang. „Purified Human Erythrocyte Pyrroline-5-carboxylate Reductase“. Journal of Biological Chemistry 264, Nr. 16 (Juni 1989): 9352–58. http://dx.doi.org/10.1016/s0021-9258(18)60538-1.
Der volle Inhalt der QuelleZhao, Man, Linlin Qian, Zhuoyu Chi, Xiaoli Jia, Fengjie Qi, Fengjie Yuan, Zhiqiang Liu und Yuguo Zheng. „Combined Metabolomic and Quantitative RT-PCR Analyses Revealed the Synthetic Differences of 2-Acetyl-1-pyrroline in Aromatic and Non-Aromatic Vegetable Soybeans“. International Journal of Molecular Sciences 23, Nr. 23 (22.11.2022): 14529. http://dx.doi.org/10.3390/ijms232314529.
Der volle Inhalt der QuelleMeng, Zhaohui, Zhiyong Lou, Zhe Liu, Ming Li, Xiaodong Zhao, Mark Bartlam und Zihe Rao. „Crystal Structure of Human Pyrroline-5-carboxylate Reductase“. Journal of Molecular Biology 359, Nr. 5 (Juni 2006): 1364–77. http://dx.doi.org/10.1016/j.jmb.2006.04.053.
Der volle Inhalt der QuelleVettore, Lisa, Rebecca Westbrook, Jennie Roberts, Cristina Escribano-Gonzalez, Federica Cuozzo, David Hodson, Colin Watts, Colin Nixon und Daniel Tennant. „FSMP-12. A ROLE FOR PROLINE BIOSYNTHESIS IN HYPOXIC GLIOBLASTOMA“. Neuro-Oncology Advances 3, Supplement_1 (01.03.2021): i18. http://dx.doi.org/10.1093/noajnl/vdab024.076.
Der volle Inhalt der QuelleWu, G., D. A. Knabe und N. E. Flynn. „Synthesis of citrulline from glutamine in pig enterocytes“. Biochemical Journal 299, Nr. 1 (01.04.1994): 115–21. http://dx.doi.org/10.1042/bj2990115.
Der volle Inhalt der QuelleHu, C. A. A., S. Khalil, S. Zhaorigetu, Z. Liu, M. Tyler, G. Wan und D. Valle. „Human Δ1-pyrroline-5-carboxylate synthase: function and regulation“. Amino Acids 35, Nr. 4 (10.04.2008): 665–72. http://dx.doi.org/10.1007/s00726-008-0075-0.
Der volle Inhalt der QuelleHu, Chien-an A., Wei-Wen Lin, Cassandra Obie und David Valle. „Molecular Enzymology of Mammalian Δ1-Pyrroline-5-carboxylate Synthase“. Journal of Biological Chemistry 274, Nr. 10 (05.03.1999): 6754–62. http://dx.doi.org/10.1074/jbc.274.10.6754.
Der volle Inhalt der QuelleSmall, Curtis, und Mary Ellen Jones. „A specific radiochemical assay for pyrroline-5-carboxylate dehydrogenase“. Analytical Biochemistry 161, Nr. 2 (März 1987): 380–86. http://dx.doi.org/10.1016/0003-2697(87)90466-0.
Der volle Inhalt der QuelleBasch, J. J., E. D. Wickham und H. M. Farrell. „Pyrroline-5-Carboxylate Reductase in Lactating Bovine Mammary Glands“. Journal of Dairy Science 79, Nr. 8 (August 1996): 1361–68. http://dx.doi.org/10.3168/jds.s0022-0302(96)76493-7.
Der volle Inhalt der QuelleFarrés, J., P. Julià und X. Parés. „Aldehyde oxidation in human placenta. Purification and properties of 1-pyrroline-5-carboxylate dehydrogenase“. Biochemical Journal 256, Nr. 2 (01.12.1988): 461–67. http://dx.doi.org/10.1042/bj2560461.
Der volle Inhalt der QuelleDissertationen zum Thema "Pyrroline-5-carboxylate"
Misener, Stephen Robert. „Cloning and characterization of pyrroline 5-carboxylate reductase from Drosophila melanogaster“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ38320.pdf.
Der volle Inhalt der QuelleZheng, Yao. „Identification of interacting mitochondrial enzymes involved in pyrroline-5-carboxylate metabolism in Arabidopsis thaliana“. Electronic Thesis or Diss., Sorbonne université, 2021. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2021SORUS269.pdf.
Der volle Inhalt der QuelleThe proteinogenic amino acid proline plays a crucial role for cellular metabolism in living organisms. In mitochondria, proline is oxidized to glutamate by the sequential action of proline dehydrogenase (ProDH) and pyrroline-5-carboxylate (P5C) dehydrogenase (P5CDH). In addition, ornithine δ-aminotransferase (δOAT) also participates in P5C formation through the conversion of ornithine and α-ketoglutarate into glutamate and P5C. Using mutants and biochemical approaches, ProDH1, P5CDH and δOAT were shown to be involved during dark-induced leaf senescence (DIS) in Arabidopsis thaliana. Striking accumulation of P5C and proline was observed in p5cdh mutant and to a lesser extent in prodh1prodh2 mutant, suggesting a putative proline-P5C cycle. Metabolomic analysis indicated that prodh1prodh2 and p5cdh have a similar metabolomic profile, but significantly different from wild-type and oat mutant, demonstrating the role of proline oxidation during DIS. ProDH1 was shown to be preferentially associated to the mitochondrial membrane fraction, while P5CDH and δOAT are more evenly distributed between matrix and membrane fractions. Homo- and hetero-oligomerizations of ProDH1, P5CDH, and δOAT were revealed using Bimolecular Fluorescence Complementation (BiFC) assay of infiltrated tobacco leaves. Interactions between P5C metabolism enzymes were further highlighted in DIS leaves using proteomics approaches coupled with mass spectrometry. Our work demonstrates that these three enzymes form P5C metabolic complex(es) involved in the oxidation of proline to fuel mitochondrial electron transfer chain to support the energy needs of senescent cells
Moraes, Alan Raphael de Farias Klein. „Caracterização biofísica da delta-1-pirrolina-5- carboxilato desidrogenase de Trypanosoma cruzi“. Universidade Federal de São Carlos, 2016. https://repositorio.ufscar.br/handle/ufscar/8415.
Der volle Inhalt der QuelleApproved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2017-01-16T17:13:19Z (GMT) No. of bitstreams: 1 DissARFKM.pdf: 5277245 bytes, checksum: eb3373a6818032ff6003ee650addae1a (MD5)
Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2017-01-16T17:13:28Z (GMT) No. of bitstreams: 1 DissARFKM.pdf: 5277245 bytes, checksum: eb3373a6818032ff6003ee650addae1a (MD5)
Made available in DSpace on 2017-01-16T17:13:52Z (GMT). No. of bitstreams: 1 DissARFKM.pdf: 5277245 bytes, checksum: eb3373a6818032ff6003ee650addae1a (MD5) Previous issue date: 2016-08-28
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Chagas Disease is a sickness that affects the population present of Latin America and it is classified by the World Health Organization as a Neglected Tropical Diseases. Chagas disease is caused by the flagellated parasite Trypanosoma cruzi, which belong to the same family as Trypanosoma brucei and Leishmania sp., and has a complex life cycle, going from an invertebrate host to a vertebrate one. In order to survive and proliferate in these host changes, T. cruzi must adapt itself to osmotic and oxidative stresses, changes in the environmental ion composition and shifts in energy sources. To perform this adaptation, the amino acid Lproline has presented an important and essential participation that affects the protozoan life cycle, such as support of the mitochondrial metabolism, the host-cell invasion and metacyclogenesis. T. cruzi 1-Delta-Pyrroline-5-Carboxylate Dehydrogenase (TcP5CDH) is involved in the catabolism of proline holding a major role in its conversion by transforming pyrroline-5-carboxylate into L-glutamate (the second step of the catabolic path) and, thus, seeming to be a promising molecular target for new drug development. The amino acids sequence of PP5CDH was used for conservation analysis, secondary structure prediction, identification of functional domains, and building of tertiary structure computer models with the techniques of Molecular Modeling and Molecular Docking. The TcP5CDH (MW: 60 kDa) was expressed in a heterologous fashion in Escherichia coli, and purified with affinity and size exclusion chromatography, resulting in approximately 2 mg/L of expression. The Dynamic Light Scattering assays where carried out with the recombinant P5CDH in the concentrations of 0.5, 1.0, 1.5 e 2.0 mg/mL, and presented an apparent molecular weight of 223,4 kDa (Rh: 12,01 nm), 246,4 kDa (Rh: 12,53 nm), 310,5 kDa (Rh: 13,83 nm) e 312,0 kDa (Rh: 12,13,86 nm), respespectively. The Circular Dichroism spectroscopy was performed with 0.2 mg/mL of TcP5CDH in the presence and absence of 100 μM of NAD+, L-Glu, and its inhibitor Disulfiram, presenting a Tm of Tm 60,01 ºC, 59,76 ºC, 57,76 ºC e 58,18 ºC, showing that TcP5CDH has a more thermic stability without ligands. Also, a deconvolution was made showing that TcP5CDH has 23% of alfa-helix, 12,3% of antiparallel beta-sheetst and 12,4% parallel beta-sheets, 18,3% of turns 41,7% of disorganized structures. These results will contribute to the understanding of the pathway of L- proline in T. cruzi and the possible future development of new drugs.
A Doença de Chagas é uma enfermidade que afeta a população presente nos países da América Latina e é classificado pela Organização Mundial da Saúde como uma Doença Tropical Negligenciada. A Doença de Chagas é causada pelo parasita flagelado Trypanosoma cruzi, pertencente à mesma família dos parasitas Trypanosoma brucei e a Leishmania sp., organismo que possui um complexo ciclo de vida, passando de um hospedeiro invertebrado para um vertebrado. Para sobreviver e proliferar nessa mudança de hospedeiro, o T. cruzi precisa se adaptar a estresses oxido-redutivos e osmóticos, mudanças da composição iônica do ambiente e mudanças na fonte de energia. Para realizar essas mudanças, o aminoácido Lprolina apresenta uma importante participação que afeta o ciclo de vida do parasita como suporte no metabolismo mitocondrial, invasão de células hospedeiras e na metaciclogênese. A 1-Delta-Pyrrolina-5-Carboxilato Desidrogenase de T. cruzi (TcP5CDH) está envolvida no catabolismo da prolina tendo um papel importante na sua conversão através da transformação da pirroline-5-carboxilato em L-glutamato (a segunda etapa da via) e, assim, parece ser um alvo molecular promissor para desenvolvimento de novos fármacos. A sequência de aminoácidos da P5CDH foi utilizada para análises de conservação, predição de estruturas secundárias, identificação de domínios funcionais e modelos computacionais da estrutura terciária através da técnicas de Modelagem por Homologia e Ancoramento Molecular. A TcP5CDH (MW: 60 kDa) foi expressa de forma heteróloga em Eschericia coli, purificada por cromatografia de afinidade e cromatografia de exclusão molecular e, em seguida, concentrada, resultando em aproximadamente 2 mg/L de expressão. Os experimentos de Espalhamento Dinâmico da Luz foram realizados com a P5CDH recombinante nas concentrações de 0.5, 1.0, 1.5 e 2.0 mg/mL e apresentaram uma massa molecular aparente de 223,4 kDa (Rh: 12,01 nm), 246,4 kDa (Rh: 12,53 nm), 310,5 kDa (Rh: 13,83 nm) e 312,0 kDa (Rh: 12,13,86 nm), respectivamente. A Espectroscopia de Dicroísmo Circular foi realizado utilizando 0,2 mg/mL da TcP5CDH e com a proteína na presença de 100 μM de NAD+, L-Glu e do inibidor Dissulfiram, apresentando uma Tm 60,01 ºC, 59,76 ºC, 57,76 ºC e 58,18 ºC, respectivamente. Além disso, uma deconvolução foi realizada mostrando que a TcP5CDH possui 23% de alfa-hélices, 12,3% de folhas-beta antiparalelas, 12.4% de folhas-beta paralelas, 18,3% de voltas e 41,7% de regiões desorganizadas Estes resultados irão contribuir no entendimento da via da L-prolina em T. cruzi e no possível desenvolvimento futuro de novos fármacos.
Pink, Desmond Barry Stephen. „Hepatic zonation of [delta]p1s-pyrroline-5-carboxylate metabolism /“. 2002.
Den vollen Inhalt der Quelle findenLai, Chin-Chun, und 賴智群. „Gene cloning, expression and characterization of 1-pyrroline-5-carboxylate dehydrogenase from Taiwanofungus camphorata“. Thesis, 2013. http://ndltd.ncl.edu.tw/handle/90226767359103332014.
Der volle Inhalt der Quelle國立臺灣海洋大學
生物科技研究所
101
1-pyrroline-5-carboxylate dehydrogenase (P5CD; EC 1.5.1.12) belongs to family IV of aldehyde dehydrogenase, a mitochondrial matrix NAD+-dependent. In metabloism, ornithine of the products of the urea cycle, is converted into proline and 1-pyrroline-5-carboxylate (P5C), then catalyze the oxidation of P5C to glutamate by P5CD. A cDNA encoding 1-pyrroline-5-carboxylate dehydrogenase from Taiwanofungus camphorata (formerly named Antrodia camphorata) was cloned by PCR (TcP5CD). It contains an open reading frame of 1,641 bp which encodes a protein of 547 amino acid residues, molecular mass is 59.4 kDa. To characterize the TcP5CD protein, the coding region was subcloned into both, an expression vector pET-20b(+) transformed into E. coli Rosetta (DE3). The recombinant His6-tag TcP5CD was expressed and purified by Ni2+-nitrilotriacetic acid agarose. The purified enzyme showed bands on 12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The Michaelis constant (KM) value for 3,5-dimethoxybenzaldehyde with NAD+ and NADP+ were 0.557 mM and 3.93mM. Half-life of the enzyme at 45C was 4.4 min, and its thermal inactivation rate constant kd was 1.23 x 10-2 min-1. The enzyme was most active at pH 7.0. The enzyme’s preferred substrate is veratraldehyde. Other aldehydes can be used as substrates including acetaldehyde, propionaldehyde and veratraldehyde.
SHIH, TENG CHIA, und 鄧佳詩. „Studies on the biosynthesis mechanism of 2-acetyl-1- pyrroline and its relationship with the expression of △1-pyrroline-5-carboxylate synthesis gene in fragrant rice“. Thesis, 2007. http://ndltd.ncl.edu.tw/handle/63122180633724158885.
Der volle Inhalt der Quelle國立屏東科技大學
食品科學系所
95
2-Acetyl-1-Pyrroline (2-AP) was a major flavor component in aromatic rice varieties Tainung 71(Yihchaun Aromatic Rice) and Tainung 72. The qualitative analysis of 2-AP was by GC-MS and found the retention time of 2-AP was approximately at 7.5 minutes. The quantity analysis of 2-AP was also performed by GC-MS. Aromatic 2-AP of Tainung 71 and Tainung 72 were 0.18 ppm and 0.34 ppm, respectively. Results of tracer experiments indicated that the pyrroline source of 2-AP was proline and glutamate, whereas the source of acetyl group was unknown. The hypothesis that 2-AP was synthesized from △1-pyrroline-5 -carboxylate (P5C) and methylglyoxal (MG) was demonstated in vitro. Proline is synthesized from glutamate via the intermediate 1-pyrroline-5-carboxylate (P5C). The intermediate P5C formation for proline synthesis is catalyzed by 1-pyrroline-5-carboxylate synthetase (P5CS). There are two kinds of P5CS which are encoded by OsP5CS1 and OsP5CS2. OsP5CS1 is a housekeeping gene, which supplies proline to the cell, and OsP5CS2 is primarily responsible for stress responses. In this study, OsP5CS1 and OsP5CS2 have been cloned from callus of non-aromatic rice (Tainung 67) and fragrant rice (Tainung 71 and 72) using PCR. The mRNA expression profiles of the OsP5CS1 and OsP5CS2 in the three cultivars were performed by RT-PCR. The results were supported by the quantition of MG and P5C by HPLC. It showed that the transcription levels of OsP5CS2 and the concentrations of MG and P5C in fragrant rice, Tainung 71 and 72, were significantly higher than those in Tainung 67. Therefore, our results indicate that the amount of 2-AP and the quantition of P5C and MG in rice callus have positive correlation.
Hare, Peter Derek. „Molecular characterisation of the gene encoding [Delta 1]-Pyrroline-5- Carboxylate Reductase isolated from Arabidopsis thaliana (L.) Heynh“. Thesis, 1995. http://hdl.handle.net/10413/10333.
Der volle Inhalt der QuelleThesis (M.Sc.)-University of Natal, Pietermaritzburg, 1995.
Buchteile zum Thema "Pyrroline-5-carboxylate"
Schomburg, D., M. Salzmann und D. Stephan. „Pyrroline-5-carboxylate reductase“. In Enzyme Handbook 7, 5–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-78521-4_2.
Der volle Inhalt der QuelleSchomburg, D., M. Salzmann und D. Stephan. „1-Pyrroline-5-carboxylate dehydrogenase“. In Enzyme Handbook 7, 61–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-78521-4_9.
Der volle Inhalt der QuelleParre, Elodie, Jacques de Virville, Françoise Cochet, Anne-Sophie Leprince, Luc Richard, Delphine Lefebvre-De Vos, Mohamed Ali Ghars, Marianne Bordenave, Alain Zachowski und Arnould Savouré. „A New Method for Accurately Measuring Δ1-Pyrroline-5-Carboxylate Synthetase Activity“. In Methods in Molecular Biology, 333–40. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60761-702-0_21.
Der volle Inhalt der QuelleGinzberg, Idit, Yoram Kapulnik und Aviah Zilberstein. „Transcription of Δ1-Pyrroline-5-Carboxylate Synthase in Alfalfa Roots During Salt Stress“. In Biology of Root Formation and Development, 279. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-5403-5_59.
Der volle Inhalt der QuelleBoer, Pnina, und Oded Sperling. „The Effect of Pyrroline-5-Carboxylate on R5P and PRPP Generation in Mouse Liver in Vivo“. In Advances in Experimental Medicine and Biology, 379–81. New York, NY: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-7703-4_86.
Der volle Inhalt der QuelleLi, Peng, und Guoyao Wu. „Characteristics of Nutrition and Metabolism in Dogs and Cats“. In Nutrition and Metabolism of Dogs and Cats, 55–98. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-54192-6_4.
Der volle Inhalt der QuelleKramer, James J., Jerry G. Henslee, Yasuo Wakabayashi und Mary Ellen Jones. „[22] δ1-pyrroline-5-carboxylate synthase from rat intestinal mucosa“. In Glutamate, Glutamine, Glutathione, and Related Compounds, 113–20. Elsevier, 1985. http://dx.doi.org/10.1016/s0076-6879(85)13025-9.
Der volle Inhalt der Quelle„O“. In Genetic variants and strains of the Laboratory mouse, herausgegeben von Mary F. Lyon, Sohaila Rastan und S. D. M. Brown, 571–87. Oxford University PressOxford, 1996. http://dx.doi.org/10.1093/oso/9780198548690.003.0017.
Der volle Inhalt der Quelle