Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Pyrotechnics composition“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Pyrotechnics composition" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Pyrotechnics composition"
Gunaryo, Gunaryo, Anggaria Maharani, Anggito Budiman, Satria Aqilla Widyatama, Elda Pratita und Shella Athaya Miwazuki. „Yellow-Flare Performance Improvement of PVC Addition into Mg-Sodium Nitrate-Based Pyrotechics“. Indonesian Journal of Chemical Studies 3, Nr. 2 (31.12.2024): 66–71. https://doi.org/10.55749/ijcs.v3i2.60.
Der volle Inhalt der QuelleDujay, Richard C. „Manufacturing and Processing Techniques Affecting Morphology of Pyrotechnic Oxidizer Particles“. Microscopy Today 9, Nr. 4 (Mai 2001): 8–13. http://dx.doi.org/10.1017/s1551929500057266.
Der volle Inhalt der QuelleSon, Nguyen Nam, Dam Quang Sang und Nguyen Van Tinh. „Predicting composition of combustion products of the pyrotechnic based on Magnesium‐Teflon‐Viton“. Vietnam Journal of Chemistry 60, S1 (November 2022): 109–15. http://dx.doi.org/10.1002/vjch.202200070.
Der volle Inhalt der QuelleGOTFRID, S. D., D. B. MIKHALEV, A. V. BELIAKOV und V. A. PETROV. „PYROTECHNIC COMPOSITIONS IN RED-BLUE COLOR SCHEME“. Herald of Technological University 27, Nr. 9 (2024): 85–89. http://dx.doi.org/10.55421/1998-7072_2024_27_9_85.
Der volle Inhalt der QuelleAimasheva, Zh, D. V. Ismailov, V. F. Grishenko, S. Bellucci, G. Partizan und T. B. Koshtibayev. „MICRO- AND NANOMICROMATERIALS IN PYROTECHNICS“. Herald of the Kazakh-British technical university 21, Nr. 2 (02.07.2024): 229–37. http://dx.doi.org/10.55452/1998-6688-2024-21-2-229-237.
Der volle Inhalt der QuelleСеднев, В. А., П. А. Аляев und Ан В. Седнев. „СИСТЕМА ПОДГОТОВКИ СПЕЦИАЛИСТОВ ПИРОТЕХНИЧЕСКИХ ПОДРАЗДЕЛЕНИЙ“. Проблемы безопасности и чрезвычайных ситуаций, Nr. 2 (01.03.2023): 80–97. https://doi.org/10.36535/0869-4176-2023-02-10.
Der volle Inhalt der QuelleSiregar, Fuad Idris, Agus Eko Prasojo, Shavira Triana Julianingrum, Desi Rahma Yanti Aulia, Sophia Nafisa Wardha und Mutiara Gita. „Light Pyrotechnics Using Gunpowder Derived from Fly Ash Bottom Ash (FABA) Waste and Activated Carbon“. Indonesian Journal of Chemical Studies 3, Nr. 1 (30.06.2024): 28–32. http://dx.doi.org/10.55749/ijcs.v3i1.42.
Der volle Inhalt der QuelleAhmad, Sheikh?Rafi, und David?Anthony Russell. „Laser Ignition of Pyrotechnics - Effects of Wavelength, Composition and Confinement“. Propellants, Explosives, Pyrotechnics 30, Nr. 2 (April 2005): 131–39. http://dx.doi.org/10.1002/prep.200400095.
Der volle Inhalt der QuelleWang, Tingwei, Jinyang Zhou, Qi Zhang, Lin Zhang, Shunguan Zhu und Yan Li. „Novel 3D cesium(i)-based EMOFs of nitrogen-rich triazole derivatives as “green” orange-light pyrotechnics“. New Journal of Chemistry 44, Nr. 4 (2020): 1278–84. http://dx.doi.org/10.1039/c9nj03577j.
Der volle Inhalt der QuelleBRYGIN, Yu P. „Unresolved issues in pyrotechnic activities as an objective cause of emergency incidents“. Fire and Emergencies: prevention, elimination 2 (2024): 13–22. http://dx.doi.org/10.25257/fe.2024.2.13-22.
Der volle Inhalt der QuelleDissertationen zum Thema "Pyrotechnics composition"
Violet, Alix. „Modélisation de la combustion de compositions pyrotechniques : approche par traitement d'images et simulation numérique“. Electronic Thesis or Diss., Orléans, 2024. http://www.theses.fr/2024ORLE1078.
Der volle Inhalt der QuellePyrotechnic compositions are composite energetic materials whose combustion produces various effects such as light, smoke, sound, or heat. This diversity makes them highly versatile, allowing for multiple applications in both civilian and military contexts. Composed of a granular mixture of at least one oxidizer and one reducer, their combustion characteristics can be modified by numerous factors: the nature and composition of the mixture, particle size, compaction rate, and manufacturing method. Each of these parameters influences the structuring of the composition by generating local variations in reactant concentration, which can be more or less favorable to the propagation of combustion. This thesis aims to develop a numerical model that incorporates the effect of anisotropy using image processing techniques.Following a brief review of the state of the art on pyrotechnic compositions, the development of a model differentiating between oxidizer and reducer grains is presented. This model incorporates two reactions coupled with mass transport phenomena: the oxidizer decomposes, releasing oxygen that diffuses within the material before reacting with the reducer. A parametric study helped identify two distinct regimes, characterized by the Damköhler number. Finally, compositions in the form of pellets were manufactured and characterized. Scanning electron microscopy (SEM) images of their surfaces were used to develop 2D maps of the distribution of the constituents using image processing techniques. These maps were then used to initialize the concentrations in the model's computational domains. Their thermal diffusivity was calculated numerically and compared to experimental measurements. Combustion simulations highlighted the impact of the local grain distribution on the propagation of the combustion front
Potgieter, Gerard. „Thermoplastic-based pyrotechnic compositions“. Diss., University of Pretoria, 2015. http://hdl.handle.net/2263/58290.
Der volle Inhalt der QuelleDissertation (MEng)--University of Pretoria, 2015.
AEL Mining Services
Chemical Engineering
MEng
unrestricted
Grobler, Johannes Marthinus. „Fluoropolymer-based 3D printable pyrotechnic compositions“. Diss., University of Pretoria, 2017. http://hdl.handle.net/2263/66199.
Der volle Inhalt der QuelleDissertation (MEng)--University of Pretoria, 2017.
Chemical Engineering
MEng
Unrestricted
Haq, Izhar Ul. „Dielectric breakdown and ignition of magnesium-teflon-viton compositions“. Thesis, University of Cambridge, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.309329.
Der volle Inhalt der QuelleTichapondwa, Shepherd Masimba. „Reactions of silicon with sulfate-based oxidizers used in pyrotechnic time delay compositions“. Thesis, University of Pretoria, 2015. http://hdl.handle.net/2263/56114.
Der volle Inhalt der QuelleThesis (PhD)--University of Pretoria, 2015.
tm2016
Chemical Engineering
PhD
Unrestricted
Cowgill, Andrew William. „The viability of poly (chlorotrifluoroethylene-co-vinylidene fluoride) as an oxidiser in extrudable pyrotechnic compositions“. Diss., University of Pretoria, 2017. http://hdl.handle.net/2263/62771.
Der volle Inhalt der QuelleDissertation (MEng)--University of Pretoria, 2017.
Chemical Engineering
MEng
Unrestricted
Opdebeck, Frédéric. „Etude numérique et expérimentale du transfert d'énergie laser à l'interface d'un système d'allumage et d'une composition pyrotechnique“. Orléans, 2002. http://www.theses.fr/2002ORLE2045.
Der volle Inhalt der QuelleRadenac, Erwan. „Etude expérimentale et numérique de l'allumage de compositions pyrotechniques par une diode laser“. Poitiers, 1998. http://www.theses.fr/1998POIT2335.
Der volle Inhalt der QuelleTarantik, Karina. „Investigation of New More Environmentally Benign, Smoke-reduced, Red- and Green-light Emitting Pyrotechnic Compositions Based on Nitrogen-rich Coloring Agents“. Diss., lmu, 2010. http://nbn-resolving.de/urn:nbn:de:bvb:19-118941.
Der volle Inhalt der QuelleRamangalahy, Jules. „Contribution a l'etude du vieillissement des compositions pyrotechniques : "le systeme zirconium-chromate de plomb"“. Orléans, 1987. http://www.theses.fr/1987ORLE2017.
Der volle Inhalt der QuelleBücher zum Thema "Pyrotechnics composition"
Lawton, B. Quantity-distance-burn relations for pyrotechnic compositions. Sudbury: HSE Books, 1999.
Den vollen Inhalt der Quelle findenConkling, John A. Chemistry of pyrotechnics: Basic priniciples and theory. New York: M. Dekker, 1985.
Den vollen Inhalt der Quelle findenYong, Leo de. A review of methods to determine the ignitability of pyrotechnic compositions. Ascot Vale, Vic: Dept. of Defence, Materials Research Laboratories, 1986.
Den vollen Inhalt der Quelle findenSchultz, Peder. Highly explosive pyrotechnic compositions: How to make them, how to use them. Boulder, Colo: Paladin Press, 1995.
Den vollen Inhalt der Quelle finden(Michael), Maksacheff M., Yong Leo de und Materials Research Laboratories (Australia), Hrsg. The kinetics and thermochemistry of the pyrotechnic composition BLC-190-Boron: Red lead oxide at its ignition temperature. Ascot Vale, Vic: Materials Research Laboratories, 1986.
Den vollen Inhalt der Quelle findenYong, Leo de. A Comparison between several standard methods used to characterize the ignition/ignition transfer of pyrotechnic compositions - a collaborative study. Part 1, Data. Ascot Vale, Vic: Dept. of Defence, Defence Science and Technology Organisation, Materials Research Laboratories, 1987.
Den vollen Inhalt der Quelle findenNotebook, Giga. Pyrotechnics Notebook : Lined, Soft Cover, Letter Size Notebook: Large Composition Book, Journal. Independently Published, 2020.
Den vollen Inhalt der Quelle findenManual of Explosives, Military Pyrotechnics, Chemical Warfare Agents, Composition, Properties and Users. Gordon Pr Pubs, 1991.
Den vollen Inhalt der Quelle findenPreparatory Manual of Black Powder and Pyrotechnics Version 4. 0 Volume 2: Methods of Forming Pyrotechnic Compositions II. Independently Published, 2018.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Pyrotechnics composition"
Bose, Ajoy K. „Pyrotechnic Composition Sensitivity“. In Military Pyrotechnics, 23–46. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003093404-2.
Der volle Inhalt der QuelleBose, Ajoy K. „Incendiary Compositions“. In Military Pyrotechnics, 297–305. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003093404-15.
Der volle Inhalt der QuelleBose, Ajoy K. „Gunpowder Compositions“. In Military Pyrotechnics, 361–70. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003093404-21.
Der volle Inhalt der QuelleBose, Ajoy K. „Photoflash Compositions“. In Military Pyrotechnics, 247–52. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003093404-11.
Der volle Inhalt der QuelleBose, Ajoy K. „Simulating Compositions“. In Military Pyrotechnics, 307–13. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003093404-16.
Der volle Inhalt der QuelleBose, Ajoy K. „Illuminating Compositions“. In Military Pyrotechnics, 209–20. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003093404-8.
Der volle Inhalt der QuelleBose, Ajoy K. „Delay Compositions“. In Military Pyrotechnics, 315–30. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003093404-17.
Der volle Inhalt der QuelleBose, Ajoy K. „Tracer Compositions“. In Military Pyrotechnics, 235–46. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003093404-10.
Der volle Inhalt der QuelleBose, Ajoy K. „Riot Control Compositions“. In Military Pyrotechnics, 289–96. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003093404-14.
Der volle Inhalt der QuelleBose, Ajoy K. „Signalling Flare Compositions“. In Military Pyrotechnics, 221–33. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003093404-9.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Pyrotechnics composition"
Leon, David, David Bolonio, Isabel Amez, Roberto Paredes und Blanca Castells. „LIFE-CYCLE ANALYSIS OF FIREWORKS: ENVIRONMENTAL IMPACT AND IMPROVEMENT OPPORTUNITIES“. In 24th SGEM International Multidisciplinary Scientific GeoConference 24, 139–48. STEF92 Technology, 2024. https://doi.org/10.5593/sgem2024/4.1/s17.18.
Der volle Inhalt der QuelleMojsilović, Jelena, Ivan Dimitrijević, Mirjana Krstović, Stevan Stupar und Veselin Živanović. „Carbon black vs charcoal: Influence on combustion properties of selected pyrotechnic compositions“. In 11th International Scientific Conference on Defensive Technologies - OTEX 2024, 241–45. Military Technical Institute, Belgrade, 2024. http://dx.doi.org/10.5937/oteh24043m.
Der volle Inhalt der QuelleKhuchunaev, Buzigit Mussayevich, Safiyat Omarovna Gekkieva und Alim Khadisovich Budaev. „EXPERIMENTAL STUDIES OF THE INFLUENCE OF COMBUSTION PRODUCTS ON ICE-FORMING EFFICIENCY PYROTECHNIC COMPOSITIONS“. In Themed collection of papers from Foreign International Scientific Conference «Trends in the development of science and Global challenges» Ьу НNRI «National development» in cooperation with AFP. December 2022. Crossref, 2023. http://dx.doi.org/10.37539/man5.2022.36.72.003.
Der volle Inhalt der QuelleAjith, V., V. Arumugaprabu, R. Ramalakshmi und N. Indumathi. „A study on thermal characterisation of effective pyrotechnic flash compositions“. In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON RESEARCH ADVANCES IN ENGINEERING AND TECHNOLOGY - ITechCET 2021. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0103830.
Der volle Inhalt der QuelleLi, Yanan, Yi'chun Cui, Zefeng Guo, Hua Guan und Lu Gao. „Study on visible light radiation performance of pyrotechnic composition in vacuum“. In Conference on Optoelectronics and Nanophotonics, herausgegeben von Yidong Huang und Zhiping Zhou. SPIE, 2021. http://dx.doi.org/10.1117/12.2603910.
Der volle Inhalt der QuelleYang, Lien. „Reaction Rate Analysis for Selected Solid-to-Solid-Reaction Pyrotechnic Compositions“. In 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2012. http://dx.doi.org/10.2514/6.2012-3733.
Der volle Inhalt der QuelleSchäfer, Timo, Chi-Yao Chang und Jochen Neutz. „Assessment of Airbag Inflator Characterization Methods for Numerical Prediction in the Automotive Restraint System Applications“. In Automotive Technical Papers. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2023. http://dx.doi.org/10.4271/2023-01-5029.
Der volle Inhalt der QuelleBasyir, Abdul, Nining Sumawati Asri, Didik Aryanto, Marga Asta Jaya Mulya, Wahyu Bambang Widayatno, Agus Sukarto Wismogroho, Isnaeni et al. „Thermal behavior and flash intensity of orange pyrotechnic compositions based on Mg-Sn-Sr(NO3)2-NaNO3-paraffin wax“. In 5TH INTERNATIONAL SEMINAR ON METALLURGY AND MATERIALS (ISMM2022): Strengthening research and innovation in metallurgy and materials for sustainable economic development. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0186091.
Der volle Inhalt der QuelleKobald, M., C. Schmierer, U. Fischer, K. Tomilin, A. Petrarolo und M. Rehberger. „The HyEnD stern hybrid sounding rocket project“. In Progress in Propulsion Physics – Volume 11. Les Ulis, France: EDP Sciences, 2019. http://dx.doi.org/10.1051/eucass/201911025.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Pyrotechnics composition"
Shortridge, Robert G., Caroline K. Wilharm und Christina M. Yamamoto. Elimination of Perchlorate Oxidizers from Pyrotechnic Flare Compositions. Fort Belvoir, VA: Defense Technical Information Center, März 2007. http://dx.doi.org/10.21236/ada608422.
Der volle Inhalt der QuelleRice, S. F., C. A. LaJeunesse, R. G. Hanush, J. D. Aiken und S. C. Johnston. Supercritical water oxidation of colored smoke, dye, and pyrotechnic compositions. Phase 1, Final report. Office of Scientific and Technical Information (OSTI), Januar 1994. http://dx.doi.org/10.2172/10122632.
Der volle Inhalt der QuelleLaJeunesse, C. A., Jennifer P. Chan, T. N. Raber, D. C. Macmillan, S. F. Rice und K. L. Tschritter. Supercritical water oxidation of colored smoke, dye, and pyrotechnic compositions. Final report: Pilot plant conceptual design. Office of Scientific and Technical Information (OSTI), November 1993. http://dx.doi.org/10.2172/10194924.
Der volle Inhalt der Quelle