Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Pyrotechnic devices“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Pyrotechnic devices" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Pyrotechnic devices"
Rossi, Carole, und Ruiqi Shen. „Miniaturized Pyrotechnic Systems Meet the Performance Needs While Limiting the Environmental Impact“. Micromachines 13, Nr. 3 (26.02.2022): 376. http://dx.doi.org/10.3390/mi13030376.
Der volle Inhalt der QuelleKim, Bae-Seong, und Juho Lee. „Development of Impact Test Device for Pyroshock Simulation Using Impact Analysis“. Aerospace 9, Nr. 8 (28.07.2022): 407. http://dx.doi.org/10.3390/aerospace9080407.
Der volle Inhalt der QuelleZhu, Yubo, Jili Rong, Qianqiang Song und Zhipei Wu. „Research on Reliability Evaluation Method of Aerospace Pyrotechnic Devices Based on Energy Measurement“. Applied Sciences 10, Nr. 22 (19.11.2020): 8200. http://dx.doi.org/10.3390/app10228200.
Der volle Inhalt der QuelleHimelblau, Harry. „Pyrotechnic devices and their applications“. Journal of the Acoustical Society of America 111, Nr. 5 (2002): 2359. http://dx.doi.org/10.1121/1.4777943.
Der volle Inhalt der QuelleGeibig, Alfred. „Pyrotechnic Devices from Coburg Castle“. Royal Armouries Yearbook 6, Nr. 1 (31.12.2001): 88–97. http://dx.doi.org/10.1080/30650682.2001.12426707.
Der volle Inhalt der QuelleWarchoł, Radosław, Marcin Nita und Rafał Bazela. „FACTORS AFFECTING THE OPERATING PARAMETERS OF PYROTECHNIC DELAY DEVICES“. PROBLEMY TECHNIKI UZBROJENIA, Nr. 4 (02.03.2017): 87–106. http://dx.doi.org/10.5604/01.3001.0010.0481.
Der volle Inhalt der QuelleVolkov, M. V. „Modernization of the electromechanical equipment the trigger device: description of the design and testing“. Spacecrafts & Technologies 5, Nr. 3 (24.09.2021): 137–45. http://dx.doi.org/10.26732/j.st.2021.3.02.
Der volle Inhalt der QuelleTóth, Nikolett Ágnes, und Lajos Móró. „Szurkolói rendbontások a stadionokban, különös tekintettel a pirotechnikai eszközök alkalmazására“. Belügyi Szemle 73, Nr. 1 (21.01.2025): 127–42. https://doi.org/10.38146/bsz-ajia.2025.v73.i1.pp127-142.
Der volle Inhalt der QuelleDong, Xiao Tong, und Yi Jiang. „Study on Mechanical Materials with Overview of Connection and Separation Devices“. Advanced Materials Research 788 (September 2013): 590–93. http://dx.doi.org/10.4028/www.scientific.net/amr.788.590.
Der volle Inhalt der QuelleГерасимов, С. И., В. И. Ерофеев, А. В. Зубанков, В. А. Кикеев, Е. Г. Косяк, П. Г. Кузнецов und В. В. Писецкий. „Применение индукционных датчиков в исследованиях быстропротекающих процессов“. Журнал технической физики 90, Nr. 8 (2020): 1374. http://dx.doi.org/10.21883/jtf.2020.08.49550.365-19.
Der volle Inhalt der QuelleDissertationen zum Thema "Pyrotechnic devices"
Marshall, N. S. „Active control of passive safety in passenger motor vehicles : a feasibility study investigating dynamic denting of members using pyrotechnic devices“. Master's thesis, University of Cape Town, 1995. http://hdl.handle.net/11427/22084.
Der volle Inhalt der QuelleOzkil, Altan. „Pyrotechnic device reliability“. Thesis, Monterey, California. Naval Postgraduate School, 1991. http://hdl.handle.net/10945/29482.
Der volle Inhalt der QuelleThe Naval Weapons Support Center is planning to implement a bonus system to improve the reliability of pyrotechnic devices. The measure of effectiveness that they wish to use to determine how to award bonuses is the reliability of pyrotechnic devices. The data available to estimate this reliability is based on the current sampling inspection plan in which devices are tested in different environments. The models which include both dependence and independence assumptions between the outcomes of these tests are implemented and estimates of overall reliability along with 95 % lower confidence bound are obtained. The 95 % lower confidence bounds are found by bootstrapping. Using these estimates, models for making the decision to award bonuses are discussed and studied using Monte Carlo simulation.
Ashrin, Aya. „Approche in vitro pour l'évaluation et la prédiction de la toxicité aiguë des fumées issues de fumigènes“. Electronic Thesis or Diss., Paris, AgroParisTech, 2024. http://www.theses.fr/2024AGPT0013.
Der volle Inhalt der QuelleThe toxicity of fumes from pyrotechnic devices particularly used by armed forces, is a significant concern for both manufacturers and users. Consequently, a danger assessment especially at the pulmonary level related to the inhalation of these fumes must be conducted. So far, this evaluation has been carried out via experimental tests requiring animal trials, which raise ethical concerns and can lead to substantial costs and delays. Moreover, the development of new pyrotechnic formulations demands significant investment in research and development before achieving adequate levels of performance and safety for qualification and commercialization.In this context, the adoption of alternative in vitro methods to anticipate the toxicity of fumes from new formulations becomes crucial to reduce the time and costs of trials while assessing potential toxicity from the early stages of R&D, thus guiding development towards less harmful formulations.The aim of this thesis was to evaluate the use of in vitro models as an alternative to animal experimentation to characterize the acute pulmonary toxicity of fume from pyrotechnic devices.The first part of the thesis work involved the pulmonary cell model selection, which is the A549-THP-1 co-culture, and developing the experimental parameters to expose the cells to fume generated by the combustion of pyrotechnic compositions. Culture support and exposure flow rate were optimized. Subsequently, once the experimental parameters were defined, a test campaign on 12 pyrotechnic formulations and 2 blanks was conducted on the chosen cell model: an A549-THP-1 alveolar cell co-culture at the air-liquid interface (ALI) was exposed to fume with presumably different levels of toxicity in a Vitrocell® type system (dynamic system) simultaneously with the exposure of rats to the same fume. The in vitro model proved predictive of these initial trials. As part of the thesis, the in vitro cytotoxic, inflammatory, and oxidative potential of the fumes was measured 24 hours after exposure. The in vitro responses observed were compared with in vivo data, obtained alongside the thesis, by making vivo-vitro correlations and showed concordances for the HC family viability and the X family inflammation.In conclusion, our results facilitated the establishment of an appropriate methodology for the assessment of acute inhalation toxicity. They underscore the importance of keeping on developing in vitro models or test batteries for this evaluation, with the goal of aligning as closely as possible with in vivo models while maintaining a standardized approach
Campbell, S. C. „Development of an apparatus to help assess the sensitiveness of explosive initiating devices to manual handling forces“. Thesis, London South Bank University, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.264804.
Der volle Inhalt der QuelleMeyerhöfer, Dietrich. „Johann Friedrich von Uffenbach. Sammler – Stifter – Wissenschaftler“. Doctoral thesis, 2020. http://hdl.handle.net/21.11130/00-1735-0000-0005-13B0-E.
Der volle Inhalt der QuelleBücher zum Thema "Pyrotechnic devices"
Bement, Laurence J. A manual for pyrotechnic design, development and qualification. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1995.
Den vollen Inhalt der Quelle findenNASA, Aerospace Pyrotechnic Systems Workshop (1st 1992 Houston Tex ). First NASA Aerospace Pyrotechnic Systems Workshop. Washington, D.C: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, 1993.
Den vollen Inhalt der Quelle findenÖzkil, Altan. Pyrotechnic device reliability. Monterey, Calif: Naval Postgraduate School, 1991.
Den vollen Inhalt der Quelle findenWhitaker, Lyn R. Pyrotechnic device reliability. Monterey, Calif: Naval Postgraduate School, 1991.
Den vollen Inhalt der Quelle findenUnited States. National Aeronautics and Space Administration. Scientific and Technical Information Program., Hrsg. First NASA Aerospace Pyrotechnic Systems Workshop: Proceedings of a workshop sponsored by the Pyrotechnically Actuated Systems Program, Office of Safety and Mission Quality, National Aeronautics and Space Administration, Washington, D.C. and held at Lyndon B. Johnson Space Center Houston, Texas, June 9-10, 1992. [Washington, DC]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, 1993.
Den vollen Inhalt der Quelle findenL, Seeholzer Thomas, und United States. National Aeronautics and Space Administration., Hrsg. Applications catalog of pyrotechnically actuated devices/systems. [Washington, DC]: National Aeronautics and Space Administration, 1995.
Den vollen Inhalt der Quelle findenH, Lucy M., und Langley Research Center, Hrsg. Report on alternative devices to pyrotechnics on spacecraft. Hampton, VA: NASA Langley Research Center, 1996.
Den vollen Inhalt der Quelle findenREPORT ON ALTERNATIVE DEVICES TO PYROTECHNICS ON SPACECRAFT... NASA-TM-110470... NASA LANGLEY RESEARCH CENTE. [S.l: s.n., 1997.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Pyrotechnic devices"
Bose, Ajoy K. „Distress Signalling Devices“. In Military Pyrotechnics, 575–83. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003093404-37.
Der volle Inhalt der QuelleBose, Ajoy K. „Riot Control Devices/Ammunitions“. In Military Pyrotechnics, 557–66. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003093404-35.
Der volle Inhalt der QuelleBose, Ajoy K. „Infrared Flare Ammunitions and Devices“. In Military Pyrotechnics, 593–605. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003093404-39.
Der volle Inhalt der QuelleBose, Ajoy K. „Infrared Flare Ammunitions and Devices“. In Military Pyrotechnics, 593–606. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003093404-41.
Der volle Inhalt der QuelleShi, Wenhui, Shuai Yue und Zhonghua Du. „Research on Launch Recoil Characteristics of Aluminum Honeycomb Buffer Under Pyrotechnic Device“. In Lecture Notes in Mechanical Engineering, 3709–24. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-8048-2_259.
Der volle Inhalt der QuelleButterworth, Philip, und Michael Spence. „William Parnell, Supplier of Staging and Ingenious Devices, and his Role in the Entry of Elizabeth Woodville into Norwich in 1469“. In Staging, Playing, Pyrotechnics and Magic: Conventions of Performance in Early English Theatre, 77–131. London: Routledge, 2021. http://dx.doi.org/10.4324/9781003195740-7.
Der volle Inhalt der QuelleYe, Yaokun, Feng Ding, Jianfeng Man, Nan Yan und Weituo Li. „A New Method to Evaluate the Adaptability of Initiating Explosive Used in the Aro-Pyrotechnic Device in Deep Space“. In Astrophysics and Space Science Proceedings, 587–94. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-19309-0_59.
Der volle Inhalt der QuelleDi Salvo, Gina M. „Devices of Virgin Martyrdom“. In The Renaissance of the Saints After Reform, 137–67. Oxford University PressOxford, 2023. http://dx.doi.org/10.1093/oso/9780192865915.003.0006.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Pyrotechnic devices"
Leon, David, David Bolonio, Isabel Amez, Roberto Paredes und Blanca Castells. „LIFE-CYCLE ANALYSIS OF FIREWORKS: ENVIRONMENTAL IMPACT AND IMPROVEMENT OPPORTUNITIES“. In 24th SGEM International Multidisciplinary Scientific GeoConference 24, 139–48. STEF92 Technology, 2024. https://doi.org/10.5593/sgem2024/4.1/s17.18.
Der volle Inhalt der QuelleLohvynenko, Anatolii, und Yevhen Boliubash. „Using Pyrotechnic Devices in the Development of Separation Systems for Rocket and Space Technologies“. In IAF Materials and Structures Symposium, Held at the 75th International Astronautical Congress (IAC 2024), 941–49. Paris, France: International Astronautical Federation (IAF), 2024. https://doi.org/10.52202/078369-0098.
Der volle Inhalt der QuelleZhang, Limei, Wei Zhang, Chuanxia Zhou, Meng Xu, Sai Ma, Gaosheng Li und Xiaoyuan Sun. „Design and Verification of a Bidirectional Loads Bearing and Low-Impact Pyrotechnic Release Device“. In 2024 International Conference on the Frontiers of Electronic, Electrical and Information Engineering (ICFEEIE), 31–35. IEEE, 2024. https://doi.org/10.1109/icfeeie64494.2024.00013.
Der volle Inhalt der QuelleLee, Hobin. „Estimating Heat Losses in Pyrotechnic Devices“. In 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.2005-3837.
Der volle Inhalt der QuelleBement, Laurence, Herbert Multhaup, Laurence Bement und Herbert Multhaup. „Determining functional reliability of pyrotechnic mechanical devices“. In 33rd Joint Propulsion Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1997. http://dx.doi.org/10.2514/6.1997-2698.
Der volle Inhalt der QuelleDong, Haiping, Tianfei Zhang, Xia Zhao und Xiao Dong. „Review of reliability assessment methods for pyrotechnic devices“. In 2011 9th International Conference on Reliability, Maintainability and Safety (ICRMS 2011). IEEE, 2011. http://dx.doi.org/10.1109/icrms.2011.5979230.
Der volle Inhalt der QuelleLavaud, Jacques, Bruno Leforgeais und Terence Hazel. „Pyrotechnic current limiting devices — From design to operation“. In 2014 Petroleum and Chemical Industry Conference Europe (PCIC Europe). IEEE, 2014. http://dx.doi.org/10.1109/pciceurope.2014.6900050.
Der volle Inhalt der QuelleGlass, John. „Uses and Abuses of Accelerated Age Testing of Pyrotechnic Devices“. In 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.2004-3419.
Der volle Inhalt der QuelleDosser, Larry R., und Margaret A. Stark. „Analysis of pyrotechnic devices by laser-illuminated high-speed photography“. In San Diego '90, 8-13 July, herausgegeben von Paul A. Jaanimagi, Barry T. Neyer und Larry L. Shaw. SPIE, 1991. http://dx.doi.org/10.1117/12.23358.
Der volle Inhalt der QuellePÄÄKKÖNEN, R., und I. KYTTÄLÄ. „NOISE CONTROL OF PYROTECHNIC DEVICES USED IN LEISURE TIME ACTIVITIES“. In Inter-Noise 1996. Institute of Acoustics, 2024. http://dx.doi.org/10.25144/19746.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Pyrotechnic devices"
Clausen, Jay L., Julie Richardson, Nic Korte, Nancy Perron, Susan Taylor, Anthony Bednar, Patricia Tuminello, William Jones, Shawna Tazik und Michael Walsh. Metal Residue Deposition from Military Pyrotechnic Devices and Field Sampling Guidance. Fort Belvoir, VA: Defense Technical Information Center, Mai 2012. http://dx.doi.org/10.21236/ada562327.
Der volle Inhalt der Quelle