Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Pyridine nucleotides“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Pyridine nucleotides" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Pyridine nucleotides"
Abdellatif, Maha. „Sirtuins and Pyridine Nucleotides“. Circulation Research 111, Nr. 5 (17.08.2012): 642–56. http://dx.doi.org/10.1161/circresaha.111.246546.
Der volle Inhalt der QuelleCOSNIER, S., und K. LELOUS. „Amperometric detection of pyridine nucleotides via immobilized viologen-accepting pyridine nucleotide oxidoreductase or immobilized diaphorase“. Talanta 43, Nr. 3 (März 1996): 331–37. http://dx.doi.org/10.1016/0039-9140(95)01755-0.
Der volle Inhalt der QuelleO'Reilly, T., und D. F. Niven. „Pyridine nucleotide metabolism by extracts derived from Haemophilus parasuis and H. pleuropneumoniae“. Canadian Journal of Microbiology 32, Nr. 9 (01.09.1986): 733–37. http://dx.doi.org/10.1139/m86-133.
Der volle Inhalt der QuelleRichter, C., und P. Meier. „Inhibition of pro-oxidant-induced mitochondrial pyridine nucleotide hydrolysis and calcium release by 4-hydroxynonenal“. Biochemical Journal 269, Nr. 3 (01.08.1990): 735–37. http://dx.doi.org/10.1042/bj2690735.
Der volle Inhalt der QuelleBillington, Richard A., Santina Bruzzone, Antonio De Flora, Armando A. Genazzani, Friedrich Koch-Nolte, Mathias Ziegler und Elena Zocchi. „Emerging Functions of Extracellular Pyridine Nucleotides“. Molecular Medicine 12, Nr. 11-12 (November 2006): 324–27. http://dx.doi.org/10.2119/2006-00075.billington.
Der volle Inhalt der QuelleNakamura, Michinari, Aruni Bhatnagar und Junichi Sadoshima. „Overview of Pyridine Nucleotides Review Series“. Circulation Research 111, Nr. 5 (17.08.2012): 604–10. http://dx.doi.org/10.1161/circresaha.111.247924.
Der volle Inhalt der QuelleJanero, D. R., D. Hreniuk, H. M. Sharif und K. C. Prout. „Hydroperoxide-induced oxidative stress alters pyridine nucleotide metabolism in neonatal heart muscle cells“. American Journal of Physiology-Cell Physiology 264, Nr. 6 (01.06.1993): C1401—C1410. http://dx.doi.org/10.1152/ajpcell.1993.264.6.c1401.
Der volle Inhalt der QuelleBeslin, A., M. P. Vié, J. P. Blondeau und J. Francon. „Identification by photoaffinity labelling of a pyridine nucleotide-dependent tri-iodothyronine-binding protein in the cytosol of cultured astroglial cells“. Biochemical Journal 305, Nr. 3 (01.02.1995): 729–37. http://dx.doi.org/10.1042/bj3050729.
Der volle Inhalt der QuelleBuillard, C., und J. L. Dreyer. „Inhibition of CA2+Efflux by Pyridine Nucleotides“. Journal of Receptor Research 11, Nr. 1-4 (Januar 1991): 653–63. http://dx.doi.org/10.3109/10799899109066433.
Der volle Inhalt der QuelleLiu, Man, Shamarendra Sanyal, Ge Gao, Iman S. Gurung, Xiaodong Zhu, Georgia Gaconnet, Laurie J. Kerchner et al. „Cardiac Na + Current Regulation by Pyridine Nucleotides“. Circulation Research 105, Nr. 8 (09.10.2009): 737–45. http://dx.doi.org/10.1161/circresaha.109.197277.
Der volle Inhalt der QuelleDissertationen zum Thema "Pyridine nucleotides"
O'Reilly, Michael Terrence Stewart. „Pyridine nucleotide metabolism by porcine haemophili“. Thesis, McGill University, 1986. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=73973.
Der volle Inhalt der QuelleGraham, François. „Regulation of 5-oxo-ETE synthesis by pyridine nucleotides in aging neutrophils“. Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=116087.
Der volle Inhalt der QuelleKirvelaitytė, Dovilė. „Hipertermijos poveikis adenino ir piridino nukleotidų koncentracijai kepenų ląstelėse ir audinyje“. Master's thesis, Lithuanian Academic Libraries Network (LABT), 2010. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2010~D_20100614_095031-16530.
Der volle Inhalt der QuelleThe application of heat in the treatment of disease was first recorded in the ancient civilizations of Egypt, Greece, and Rome from as early as 2000 BC. Nowadays hiperthermia is widely using in cancer diseases in all the world. It was determined by many scientists that cancer cells are more sensitive for supraphysiological temperature (41-45°C) killing compared to normal cells. There are numerous evidences that hyperthermia can increase the effectiveness of other cancer therapies: radiotherapy, chemotherapy, immunotherapy and surgery. There is little known about the mechanisms of hyperthermia effects on healthy tissue, which are important in fever, in hyperthermic treatment of neighboring tumour and in thermoablation. Therefore it is very important to determinate the vability of cells during different hyperthermic treatment and hyperthermic effects of adenine ir pyridine nucleotides concentrations.The aim of study was to value the effect of hyperthermia,which is typical remote from thermoprobe tissue areas, on the concentration of adenine and pyridine nucleotides in hepatocytes and liver tissue. It was used ion-pair high-performance liquid chromatography method, which allows to disperse different combinations of hydrophobicity. Also were evaluated live and dead cells quantity in the suspension through tripan blue method and NAD(P)H fluorescence changes in liver tissue during the ablation. The results showed that isolated hepatocytes exhibited with high viability (80%)... [to full text]
Djerada, Zoubir. „Récepteurs P2Y et Cardioprotection : implication du récepteur P2Y11-like dans le préconditionnement pharmacologique induit par le NAADP extracellulaire“. Thesis, Reims, 2013. http://www.theses.fr/2013REIMM201.
Der volle Inhalt der QuelleMyocardial infarction (MI) accounts for more than 15 % of global deaths related to cardiovascular diseases (CD). In the absence of a prompt reperfusion of occluded coronary arteries, none of therapeutic interventions is able to limit the deleterious effects of MI. One of the most effective means of cardioprotection, studied in research, is the ischemic cardiac preconditioning (ICP). Adenosine released during ICP triggers, via P1 receptors, cardioprotective effects. Involvement of the purinoceptors (P2Y) in cardioprotective effects has been also reported. P2Y2,4,6 receptors, the most studied P2Y receptors in cardioprotection, are activated by the nucleotides released during ischemia such as ATP and UTP. Among the P2Y receptors, P2Y11 is dually coupled to Gs and Gq proteins and is the single P2Y receptor which has been linked, via a genetic polymorphism, to an increased risk of acute myocardial infarction and elevated levels of C-reactive protein in humans in all age groups (Amisten et al., 2007). This suggests for the P2Y11 receptor an important role in primary prevention and as a therapeutic target of the P2Y11 receptor for myocardial infarction. β-NAD, a pyridine nucleotide, is released during ischemia like adenosine, ATP and UTP. However, no study has focused on the roles of P2Y11 receptor and pyridine nucleotide in mediating cardioprotective effects while NAADP, a β-NAD metabolite, has been reported as an agonist (Moreschi et al., 2008) of the P2Y11 receptor. In this work, we show, for the first time, increased interstitial concentrations of NAADP during ischemia. Interstitial kinetics of NAADP is similar to adenosine. Using a pharmacological preconditioning protocol, triggered by extracellular NAADP ([NAADP]e) before a prolonged ischemia/reperfusion (I/R), rat hearts rapidly recovered post-ischemic contractile function and displayed attenuated contracture, infarct size and arrhythmogenesis. This pharmacological preconditioning involves the P2Y11-like receptor. In cardiomyocytes culture, [NAADP]e induces specific metabotropic response of the P2Y11-like receptor. [NAADP]e triggers via the P2Y11-like receptor prosurvival protein kinases activation such as PKCε, ERK1/2, AKT and GSK-3β which explains its protective effects. Phosphorylation of prosurvival protein kinases requires the mediation of PKA, PLC and src. As with [NAADP]e, the NF546, a new selective agonist of P2Y11 receptor, triggers a metabotropic activity, thus confirming the functional existence of P2Y11-like receptor in rat cardiomyocytes. Activation of the P2Y11-like receptor, either by [NAADP]e or NF546 induced an increase in intracellular concentrations of β-NAD and its metabolites, NADP, NAADP, NAAD and cyclic ADP ribose. More, β-NAD, NAADP as well as NAAD have been involved in activation of cardioprotective pathways such as sirtuine pathways and autophagy. Taken together, our data demonstrate for the first time that the P2Y11 receptor mediates cardioprotective effects induced by [NAADP]e. NAADP is released during ischemia suggesting that [NAADP]e may act as a paracrine survival factor, prolonging cardiomyocytes lifespan during ischemic events
Buckley, Patrick Anthony. „Structural studies on pyridine nucleotide dependent enzymes“. Thesis, University of Sheffield, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.392543.
Der volle Inhalt der QuelleWilson, Heather Louise. „Regulation of calcium mobilisation by pyridine nucleotide metabolites“. Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.298417.
Der volle Inhalt der QuelleBoonstra, Birgitte. „A study of bacterial soluble pyridine nucleotide transhydrogenases“. Thesis, University of Cambridge, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621214.
Der volle Inhalt der QuelleDenicola-Seoane, Ana. „Studies on pyridine nucleotide-dependent processes in Haemophilus influenzae“. Diss., Virginia Polytechnic Institute and State University, 1989. http://hdl.handle.net/10919/54514.
Der volle Inhalt der QuellePh. D.
Clarke, David Morgan. „Pyridine nucleotide transhydrogenase of Escherichia coli: nucleotide sequence of the pnt gene and characterization of the enzyme complex“. Thesis, University of British Columbia, 1986. http://hdl.handle.net/2429/27044.
Der volle Inhalt der QuelleMedicine, Faculty of
Biochemistry and Molecular Biology, Department of
Graduate
Breidenbach, Carl R. „Phospholipid Dependency of Membrane-Associated Pyridine Nucleotide-Utilizing and Succinate Dehydrogenase Activities of Adult Hymenolepis Diminuta (Cestoda) and Ascaris Suum (Nematoda)“. Bowling Green State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1343921911.
Der volle Inhalt der QuelleBücher zum Thema "Pyridine nucleotides"
David, Dolphin, Avramović Olga und Poulson Rozanne, Hrsg. Pyridine nucleotide coenzymes: Chemical, biochemical, and medical aspects. New York: Wiley, 1987.
Den vollen Inhalt der Quelle findenPharmacology of purine and pyrimidine receptors. San Diego, CA: Elsevier, 2011.
Den vollen Inhalt der Quelle findenEverse, Johannes. Pyridine Nucleotide Coenzymes. Elsevier Science & Technology Books, 2012.
Den vollen Inhalt der Quelle findenSund, Horst. Pyridine Nucleotide-Dependent Dehydrogenases: Proceedings of an Advanced Study Institute Held at the University of Konstanz, Germany, September 15-20 1969. Springer, 2012.
Den vollen Inhalt der Quelle findenDolphin, David, Olga Avramovic und Rozanne Poulson. Pyridine Nucleotide Coenzymes: Chemical, Biochemical, and Medical Aspects, Part A (Coenzymes and Cofactors, Vol 2). John Wiley & Sons, 1987.
Den vollen Inhalt der Quelle findenPyridine nucleotide coenzymes. New York: Wiley, 1986.
Den vollen Inhalt der Quelle findenPyridine nucleotide coenzymes: Chemical, biochemical and medical aspects. New York: Wiley, 1987.
Den vollen Inhalt der Quelle findenJacobson, Kenneth A., und Joel Linden. Pharmacology of Purine and Pyrimidine Receptors. Elsevier Science & Technology Books, 2011.
Den vollen Inhalt der Quelle findenNucleotide sequence of the pntA and pntB genes encoding the pyridine nucleotide transhydrogenase of 'Escherichia coli'. Berlin: Springer-Verlag, 1986.
Den vollen Inhalt der Quelle findenM, Clarke David, Hrsg. Nucleotide sequence of the pnt A and pnt B genes encoding the pyridine nucleotide transhydrogenase of Escherichia coli. New York: Springer-Verlag, 1986.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Pyridine nucleotides"
Passonneau, Janet V., und Oliver H. Lowry. „Pyridine Nucleotides“. In Enzymatic Analysis, 3–21. Totowa, NJ: Humana Press, 1993. http://dx.doi.org/10.1007/978-1-60327-407-4_1.
Der volle Inhalt der QuellePetucci, Chris, Jeffrey A. Culver, Nidhi Kapoor, E. Hampton Sessions, Daniela Divlianska und Stephen J. Gardell. „Measurement of Pyridine Nucleotides in Biological Samples Using LC-MS/MS“. In Methods in Molecular Biology, 61–73. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9488-5_7.
Der volle Inhalt der QuelleRustin, Pierre, Michel Neuburger, Roland Douce und Claude Lance. „The Redox State of Mitochondrial Pyridine Nucleotides Versus Rate of Substrate Oxidation“. In Plant Mitochondria, 89–92. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4899-3517-5_12.
Der volle Inhalt der QuelleDiPette, D., R. Townsend, J. Guntipalli, K. Simpson, A. Rogers und E. Bourke. „Effect of Calcium Antagonists on Vasopressin Induced Changes in Myocardial and Renal Pyridine Nucleotides in the Intact Rat“. In Myocardial and Skeletal Muscle Bioenergetics, 503–17. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-5107-8_38.
Der volle Inhalt der QuelleHarding, E. A., C. Kane, R. F. L. James, N. J. M. London und M. J. Dunne. „Modulation of Three Types of Potassium Selective Channels by NAD and Other Pyridine Nucleotides in Human Pancreatic β-Cells“. In Advances in Experimental Medicine and Biology, 43–50. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4899-1819-2_6.
Der volle Inhalt der QuelleLilley, R. McC, A. Goyal, T. Marengo und A. D. Brown. „The Response of Dunaliella to Salt Stress: A Comparison of Effects on Photosynthesis, and on the Intracellular Levels of the Osmoregulatory Solute Glycerol, the Adenine Nucleotides and the Pyridine Nucleotides“. In Progress in Photosynthesis Research, 193–96. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-017-0519-6_42.
Der volle Inhalt der QuelleShibata, K., T. Hayakawa, H. Taguchi und K. Iwai. „Regulation of Pyridine Nucleotide Coenzyme Metabolism“. In Advances in Experimental Medicine and Biology, 207–18. Boston, MA: Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4684-5952-4_19.
Der volle Inhalt der QuelleSwitzer, Robert L., Howard Zalkin und Hans Henrik Saxild. „Purine, Pyrimidine, and Pyridine Nucleotide Metabolism“. In Bacillus subtilis and Its Closest Relatives, 255–69. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555817992.ch19.
Der volle Inhalt der QuelleTheorell, H. „Fluorimetric Studies on Pyridine-Nucleotide Enzyme Complexes“. In Ciba Foundation Symposium - Significant Trends in Medical Research, 18–42. Chichester, UK: John Wiley & Sons, Ltd., 2008. http://dx.doi.org/10.1002/9780470719176.ch3.
Der volle Inhalt der QuelleMicheli, Vanna, Carlo Ricci, Sylvia Sestini, Marina Rocchigiani, Monica Pescaglini und Giuseppe Pompucci. „Pyridine Nucleotide Metabolism: Purine and Pyrimidine Interconnections“. In Advances in Experimental Medicine and Biology, 323–28. New York, NY: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-7703-4_72.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Pyridine nucleotides"
Masters, Barry R. „Optical Biopsy of Ocular Tissue with Two-Photon Excitation Laser Scanning Microscopy“. In Biomedical Optical Spectroscopy and Diagnostics. Washington, D.C.: Optica Publishing Group, 2006. http://dx.doi.org/10.1364/bosd.1996.ft7.
Der volle Inhalt der Quelle