Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Pyrazolone derivatives“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Pyrazolone derivatives" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Pyrazolone derivatives"
Abd-Ella, Aly A., Saoud A. Metwally, Mokhtar A. Abd ul-Malik, Yasser A. El-Ossaily, Fathy M. Abd Elrazek, Safwat A. Aref, Youssra A. Naffea und Shaban A. A. Abdel-Raheem. „A review on recent advances for the synthesis of bioactive pyrazolinone and pyrazolidinedione derivatives“. Current Chemistry Letters 11, Nr. 2 (2022): 157–72. http://dx.doi.org/10.5267/j.ccl.2022.2.004.
Der volle Inhalt der QuelleEdrees, Mastoura M. „Synthesis of 4-hydrazinopyrazolo[3,4-d]pyrimidines and their Reactions with Carbonyl Compounds“. Journal of Chemical Research 37, Nr. 1 (Januar 2013): 6–10. http://dx.doi.org/10.3184/174751912x13543818811749.
Der volle Inhalt der QuelleGil-Ordóñez, Marta, Camille Aubry, Cristopher Niño, Alicia Maestro und José M. Andrés. „Squaramide-Catalyzed Asymmetric Mannich Reaction between 1,3-Dicarbonyl Compounds and Pyrazolinone Ketimines: A Pathway to Enantioenriched 4-Pyrazolyl- and 4-Isoxazolyl-4-aminopyrazolone Derivatives“. Molecules 27, Nr. 20 (17.10.2022): 6983. http://dx.doi.org/10.3390/molecules27206983.
Der volle Inhalt der QuelleGediz Erturk, Aliye, und Hilal Omerustaoglu. „Synthesis and Cytotoxic Evaluation of Some Substituted 5-Pyrazolones and Their Urea Derivatives“. Molecules 25, Nr. 4 (18.02.2020): 900. http://dx.doi.org/10.3390/molecules25040900.
Der volle Inhalt der QuellePattan, S. R., P. A. Chavan, R. A. Muluk, S. S. Dengale, S. V. Hiremath, K. D. Pansare, S. S. Vetal und J. S. Pattan. „SYNTHESIS AND BIOLOGICAL EVALUATION OF SOME HETEROCYCLES CONTAINING OXADIAZOLE AND PYRAZOLE RING FOR ANTI-BACTERIAL, ANTI-FUNGAL AND ANTI-TUBERCULAR ACTIVITIES“. INDIAN DRUGS 49, Nr. 03 (28.03.2012): 18–24. http://dx.doi.org/10.53879/id.49.03.p0018.
Der volle Inhalt der QuelleYang, Kai, Xiaoze Bao, Ye Yao, Jingping Qu und Baomin Wang. „Iodine-mediated cross-dehydrogenative coupling of pyrazolones and alkenes“. Organic & Biomolecular Chemistry 16, Nr. 34 (2018): 6275–83. http://dx.doi.org/10.1039/c8ob01645c.
Der volle Inhalt der QuelleBrogden, Rex N. „Pyrazolone Derivatives“. Drugs 32, Supplement 4 (1986): 60–70. http://dx.doi.org/10.2165/00003495-198600324-00006.
Der volle Inhalt der QuelleManojkumar, Parameswaran, Thengungal Ravi und Gopalakrishnan Subbuchettiar. „Synthesis of coumarin heterocyclic derivatives with antioxidant activity and in vitro cytotoxic activity against tumour cells“. Acta Pharmaceutica 59, Nr. 2 (01.06.2009): 159–70. http://dx.doi.org/10.2478/v10007-009-0018-7.
Der volle Inhalt der QuelleZhang, Wande, Shah Nawaz, Yue Huang, Wenjing Gong, Xingfu Wei, Jingping Qu und Baomin Wang. „C-4 benzofuranylation of pyrazolones by a metal-free catalyzed indirect heteroarylation strategy“. Organic & Biomolecular Chemistry 19, Nr. 46 (2021): 10215–22. http://dx.doi.org/10.1039/d1ob01920a.
Der volle Inhalt der QuelleBao, Xiaoze, Xingyue Wang, Jin-Miao Tian, Xinyi Ye, Baomin Wang und Hong Wang. „Recent advances in the applications of pyrazolone derivatives in enantioselective synthesis“. Organic & Biomolecular Chemistry 20, Nr. 12 (2022): 2370–86. http://dx.doi.org/10.1039/d1ob02426d.
Der volle Inhalt der QuelleDissertationen zum Thema "Pyrazolone derivatives"
Mariappan, G. „Cardioprotective properties of pyrazotone derivatives in myocardial ischemic reperfusion injury“. Thesis, University of North Bengal, 2011. http://hdl.handle.net/123456789/1501.
Der volle Inhalt der QuelleVetica, Fabrizio [Verfasser]. „Organocatalytic Asymmetric Synthesis of Isochromanones, Tetranortriterpenoids and Pyrazolone Derivatives / Fabrizio Vetica“. München : Verlag Dr. Hut, 2018. http://d-nb.info/1155056213/34.
Der volle Inhalt der QuelleMotson, Graham Robert. „Coordination chemistry of 3-(2'-pyridyl) pyrazole derivative ligands“. Thesis, University of Bristol, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.391153.
Der volle Inhalt der QuelleNakhai, Azadeh. „Synthetic studies of nitrogen containing heterocycles, particularly pyrazole and benzotriazine derivatives“. Stockholm, 2009. http://diss.kib.ki.se/2009/978-91-7409-687-3/.
Der volle Inhalt der QuelleYazici, Ceyda. „Synthesis Of 4-iodopyrazole Derivatives“. Master's thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/3/12609750/index.pdf.
Der volle Inhalt der QuelleC for 5 h. Finally, acetylenic phenyl hydrazone derivatives were subjected to electrophilic cyclization by treating with excess molecular iodine at 80 °
C for 3 h. Although electrophilic cyclization is commonly used in organic chemistry, it has not been employed for the cyclization of acetylenic phenyl hydrazones to pyrazole derivatives. Under optimized conditions, these reactions afforded 1-aryl-5-alkyl/aryl-4-iodopyrazole derivatives in moderate to good yields as the single or the major product of the reactions. In some cases, 1-aryl-5-alkyl/arylpyrazole derivatives resulted from these reactions as minor products. In conclusion, 4-iodopyrazole derivatives were synthesized for the first time directly from acyclic starting materials, ,-acetylenic phenylhydrazones and iodine, via electrophilic cyclization.
Rango, Enrico. „PRECLINICAL CHARACTERIZATION OF SFK INHIBITORS, PYRAZOLO[3,4-d]PYRIMIDINE SCAFFOLD-BASED DERIVATIVES, FOR CANCER TREATMENT“. Doctoral thesis, Università di Siena, 2021. http://hdl.handle.net/11365/1140389.
Der volle Inhalt der QuelleGRECO, CHIARA. „Synthesis and biological evaluation of pyrazolo[3,4-d]pyrimidine derivatives active as SGK1, Fyn and Src kinases inhibitors“. Doctoral thesis, Università degli studi di Genova, 2020. http://hdl.handle.net/11567/1001600.
Der volle Inhalt der QuelleGormen, Meral. „Synthesis Of Ferrocenyl Substituted Pyrazoles“. Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/3/12606358/index.pdf.
Der volle Inhalt der QuellePasin, Juliana Saibt Martins. „Atividade antipirética e antiinflamatória de derivados 5-trifluormetil-4,5-diidro-1H-1-carboxiamida pirazol em ratos“. reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2010. http://hdl.handle.net/10183/28004.
Der volle Inhalt der QuelleFever is a regulated increase of body core temperature characterized by a raised thermoregulatory set point, which results from the interaction of the central nervous and immune systems. While fever is a hallmark of injury, infection and inflammation, it has also been considered the most important component of acute-phase response. Although there is evidence supporting the idea that fever enhances host defenses, some studies have suggested that raising core temperature to the febrile range may be harmful. Therefore, in the clinical situations in which fever-associated risks outweigh benefits, antipyretic treatment is formally indicated. Pyrazoles constitute an important group of organic compounds that have been extensively studied due to their numerous biological activities. Recently a series of pyrazole derivatives have been screened for antinociceptive and antiedematogenic activity in mice. These compounds cause antinociception in the formalin test and in the Freund's adjuvant (CFA) animal model of arthritis and decrease carrageenin-induced edema. Given the effects reported for these compounds, we decided to investigate the effect of eight 5-hydroxy-5-trifluoromethyl-4,5-dihydro- 1H-1-carboxyamidepyrazoles (TFDPs) on body temperature, baker´s yeast-induced fever and peritoneal inflammation in 28 days-old male Wistar rats. Only 3ethyl- and 3propyl-TFDP (140 and 200 μmol/kg, respectively, s.c., 4 h after S. cerevisiae injection) attenuated baker’s yeastinduced fever by 61.0% and 82.4%, respectively. These two effective antipyretics were selected to investigate the mechanisms of action. The effects on cyclooxygenase-1 and -2 (COX-1 and COX-2) activities, on 1,1-diphenyl-2-picrylhydrazyl (DPPH) oxidation in vitro, on TNF-a and IL- 1b levels and on leukocyte counts in the washes of peritoneal cavities of rats injected with baker’s yeast were determined. While 3ethyl- and 3propyl-TFDP did not reduce baker’s yeastinduced increases of IL-1 or TNF- levels, 3ethyl-TFDP caused a 42% reduction in peritoneal leukocyte count. 3ethyl- and 3propyl-TFDP did not alter COX-1 and COX-2 activities in vitro, but presented antioxidant activity in the DPPH assay with an IC50 of 39.3 (25.0-62.0) mM and 162.9 (135.6-195.7) mM, respectively. In a other set of the experiments, we investigate the effect of 3- ethyl- and 3-propyl-5-hydroxy-5-trifluoromethyl-4,5-dihydro-1H-1-carboxyamidepyrazoles on S.cerevisiae-induced peritoneal inflammation in rats. Pre-treatment with 3ethyl-TFDP (140 μmol/kg, 5 mL/Kg) significantly prevented S.cerevisiae-induced increase in leukocyte influx, peritoneal vascular permeability and myeloperoxidase activity, but had no effect on TNF-a and IL-1b levels. On the other hand, 3propyl-TFDP (200 μmol/kg, 5 mL/Kg) had no effect on these inflammatory parameters. The current study describes two novel antipyretic pyrazole derivatives, whose mechanisms of action do not involve the classic inhibition of the COX pathway or pyrogenic cytokine release. In addition, it is shown that 3ethyl-TFDP presents antiinflammatory potential, since it reduces leukocyte influx, peritoneal vascular permeability and MPO activity. Taken together, our data suggest that the pyrazole derivatives 3ethyl- and 3propyl-TFDP seems a promising antipyretic and anti-inflammatory compounds.
Crotti, Simone. „Computer assisted synthesis and in-vitro cytotoxic evaluation of new pyrazole-fused isoquinolinoquinones derivatives as PI3K receptor antagonist with promising antitumoral activity“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/11206/.
Der volle Inhalt der QuelleBücher zum Thema "Pyrazolone derivatives"
Wiley, Richard H., und Paul F. Wiley. Pyrazolones, Pyrazolidones, and Derivatives. Wiley & Sons, Incorporated, John, 2009.
Den vollen Inhalt der Quelle findenWiley, Richard H., und Paul F. Wiley. Pyrazolones, Pyrazolidones, and Derivatives. Wiley & Sons, Limited, John, 2007.
Den vollen Inhalt der Quelle findenWiley, Richard H., und Paul F. Wiley. Chemistry of Heterocyclic Compounds, Pyrazolones, Pyrazolidones, and Derivatives. Wiley & Sons, Incorporated, John, 2008.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Pyrazolone derivatives"
Niedenzu, Kurt, und Swiatoslaw Trofimenko. „Pyrazole derivatives of boron“. In Topics in Current Chemistry, 1–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/3-540-15811-1_1.
Der volle Inhalt der QuelleKabi, Arup K., Sattu Sravani, Raghuram Gujjarappa, Aakriti Garg, Nagaraju Vodnala, Ujjawal Tyagi, Dhananjaya Kaldhi, Virender Singh, Sreya Gupta und Chandi C. Malakar. „Overview on Biological Activities of Pyrazole Derivatives“. In Materials Horizons: From Nature to Nanomaterials, 229–306. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8399-2_7.
Der volle Inhalt der QuelleKang, Hyo Sim, Sun Wha Oh und Young Soo Kang. „Comparison of Optical Properties of Pyrazoline Derivative Nanoparticles“. In Solid State Phenomena, 39–42. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/3-908451-27-2.39.
Der volle Inhalt der QuelleSwarts, Steven G., Mei Zhang, Liangjie Yin, Chaomei Liu, Yeping Tian, Yongbing Cao, Michael Swarts et al. „Antioxidant Properties of Select Radiation Mitigators Based on Semicarbazone and Pyrazole Derivatives of Curcumin“. In Oxygen Transport to Tissue XXXII, 291–97. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-1-4419-7756-4_39.
Der volle Inhalt der QuelleSafi, Zaki S., Mohammed H. Rida und Hassan M. Tamous. „Application of Density Functional Theory to Study the Anticorrosive Effects of Some Pyrazole Derivatives“. In Corrosion Science, 107–36. New York: Apple Academic Press, 2023. http://dx.doi.org/10.1201/9781003328513-4.
Der volle Inhalt der QuelleCaravatti, G., J. Brüggen, E. Buchdunger, R. Cozens, P. Furet, N. Lydon, T. O'Reilly und P. Traxler. „Pyrrolo[2,3-d]pyrimidine and Pyrazolo[3,4-d]pyrimidine Derivatives as Selective Inhibitors of the EGF Receptor Tyrosine Kinase“. In Anticancer Agents, 231–44. Washington, DC: American Chemical Society, 2001. http://dx.doi.org/10.1021/bk-2001-0796.ch014.
Der volle Inhalt der QuelleAngulwar, Jaman A. „Multicomponent Synthesis of 2-Substituted Derivatives of 6-Amino-5-Cyano-1,4-Dihydro-3-Methyl-1,4-Diphenylpyrano-[2,3-C]-Pyrazole Using Knoevenagel and Michael Addition“. In Modern Green Chemistry and Heterocyclic Compounds, 113–36. Series statement: Innovations in physical chemistry: monographic series: Apple Academic Press, 2020. http://dx.doi.org/10.1201/9780367276942-4.
Der volle Inhalt der QuelleNiedenzu, Kurt, und Swiatoslaw Trofimenko. „Pyrazole Derivatives of Boron“. In Structural Chemistry of Boron and Silicon, 1–38. De Gruyter, 1985. http://dx.doi.org/10.1515/9783112620588-001.
Der volle Inhalt der QuelleNandurkar, Deweshri, Kishor Danao, Vijayshri Rokde, Ruchi Shivhare und Ujwala Mahajan. „Pyrazole Scaffold: Strategies toward the Synthesis and Their Applications“. In Strategies Towards the Synthesis of Heterocycles and Their Applications [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.108764.
Der volle Inhalt der QuelleS. Laitonjam, Warjeet, und Nimalini Moirangthem. „Construction of Biologically Active Five- and Six-Membered Fused Ring Pyrimidine Derivatives from 1,3-Diarylthiobarbituric Acids (DTBA)“. In Strategies Towards the Synthesis of Heterocycles and Their Applications [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.108842.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Pyrazolone derivatives"
Pratiwi, S., und A. H. Cahyana. „Synthesis of pyrazolone derivatives compound using nanomagnetic Fe3O4 catalyst from waste cooking oil and iron rust and antioxidant activity test“. In PROCEEDINGS OF THE 6TH INTERNATIONAL SYMPOSIUM ON CURRENT PROGRESS IN MATHEMATICS AND SCIENCES 2020 (ISCPMS 2020). AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0059243.
Der volle Inhalt der QuelleMuškinja, Jovana M., Jelena S. Katanić Stanković und Zoran R. Ratković. „SYNTHESIS AND ANTIOXIDANT ACTIVITY OF SOME NEW SULFONAMIDE DERIVATIVES“. In 1st INTERNATIONAL Conference on Chemo and BioInformatics. Institute for Information Technologies, University of Kragujevac, 2021. http://dx.doi.org/10.46793/iccbi21.351m.
Der volle Inhalt der QuelleGondek, E., J. Niziol, A. Danel und J. Sanetra. „Photovoltaic effect based on pyrazole derivatives“. In 2009 3rd ICTON Mediterranean Winter Conference (ICTON-MW 2009). IEEE, 2009. http://dx.doi.org/10.1109/ictonmw.2009.5385546.
Der volle Inhalt der QuelleJanardhana, K., V. Ravindrachary, P. C. Rajesh Kumar, Yogisha, Bhoja Poojary, K. B. Manjunatha und Ismayil. „Third Order Optical Nonlinearity of a Pyrazoline Derivative“. In THE 10TH ASIAN INTERNATIONAL CONFERENCE ON FLUID MACHINERY. American Institute of Physics, 2011. http://dx.doi.org/10.1063/1.3606354.
Der volle Inhalt der QuelleKrunić, Mihajlo J., Jelena Z. Penjišević, Slađana Kostić-Rajačić, Vladimir B. Šukalović, Deana B. Andrić und Ivana I. Jevtić. „Pyrazole/tacrine derivatives as potential cholinesterase inhibitors“. In 2nd International Conference on Chemo and Bioinformatics. Institute for Information Technologies, University of Kragujevac, 2023. http://dx.doi.org/10.46793/iccbi23.567k.
Der volle Inhalt der QuelleLiu, Xiaobo, Shan Xu und Yinhua Xiong. „Synthesis of 3-phenyl-1H-pyrazole Derivatives“. In 2016 7th International Conference on Education, Management, Computer and Medicine (EMCM 2016). Paris, France: Atlantis Press, 2017. http://dx.doi.org/10.2991/emcm-16.2017.117.
Der volle Inhalt der QuelleCin, Gunseli Turgut, Seda Demirel Topel, Neslihan Nohut Maslakci, Esin Eren und Aysegul Uygun Oksuz. „Plasma modified chitosan/N-acetyl-2-pyrazoline derivative nanofibers“. In 2015 IEEE International Conference on Plasma Sciences (ICOPS). IEEE, 2015. http://dx.doi.org/10.1109/plasma.2015.7179648.
Der volle Inhalt der QuellePriyanka, S., S. Sivapriya, D. Sivakumar, M. Gopalakrishnan, M. Seenivasan und H. Manikandan. „Synthesis and DFT calculation of novel pyrazole derivatives“. In INTERNATIONAL CONFERENCE ON RECENT TRENDS IN APPLIED MATHEMATICAL SCIENCES (ICRTAMS-2020). AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0063016.
Der volle Inhalt der QuelleAdel, Mariam H., und Hiba H. Ibraheem. „Synthesis, molecular docking, and anti-tumor activity of pyrazole derivatives“. In FIFTH INTERNATIONAL CONFERENCE ON APPLIED SCIENCES: ICAS2023. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0210692.
Der volle Inhalt der QuelleKarpinski, Pawel, Lech Sznitko, Adam Szukalski, Jaroslaw Mysliwiec, Andrzej Miniewicz, Patrick Ferrand, Herve Rigneault und Sophie Brasselet. „Second harmonic generation and two-photon excitation fluorescence from individual nanocrystals of pyrazoline derivatives“. In 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC. IEEE, 2013. http://dx.doi.org/10.1109/cleoe-iqec.2013.6801794.
Der volle Inhalt der Quelle