Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Push-Pull chromophores.

Zeitschriftenartikel zum Thema „Push-Pull chromophores“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Push-Pull chromophores" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Kato, Shin-ichiro, und François Diederich. „Non-planar push–pull chromophores“. Chemical Communications 46, Nr. 12 (2010): 1994. http://dx.doi.org/10.1039/b926601a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Gupta, Vinod Kumar, und Ram Adhar Singh. „An investigation on single crystal growth, structural, thermal and optical properties of a series of organic D–π–A push–pull materials“. RSC Advances 5, Nr. 48 (2015): 38591–600. http://dx.doi.org/10.1039/c5ra04907e.

Der volle Inhalt der Quelle
Annotation:
We present the large single crystal growth of a series of donor–π–acceptor (D–π–A) push–pull chromophores (1–4). The thermal, structural and optical properties of the synthesized chromophores were explored. These studies indicate the potential opto-electronic application of these push–pull chromophores.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Eom, Taejun, und Anzar Khan. „Push-pull azobenzene chromophores with negative halochromism“. Dyes and Pigments 188 (April 2021): 109197. http://dx.doi.org/10.1016/j.dyepig.2021.109197.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Coluccini, Carmine, Pierangelo Metrangolo, Marco Parachini, Dario Pasini, Giuseppe Resnati und Pierpaolo Righetti. „“Push-pull” supramolecular chromophores supported on cyclopolymers“. Journal of Polymer Science Part A: Polymer Chemistry 46, Nr. 15 (01.08.2008): 5202–13. http://dx.doi.org/10.1002/pola.22848.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Kato, Shin-ichiro, und Francois Diederich. „ChemInform Abstract: Non-Planar Push-Pull Chromophores“. ChemInform 41, Nr. 25 (22.06.2010): no. http://dx.doi.org/10.1002/chin.201025206.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Yamada, Michio. „Perspectives on push–pull chromophores derived from click-type [2 + 2] cycloaddition–retroelectrocyclization reactions of electron-rich alkynes and electron-deficient alkenes“. Beilstein Journal of Organic Chemistry 20 (22.01.2024): 125–54. http://dx.doi.org/10.3762/bjoc.20.13.

Der volle Inhalt der Quelle
Annotation:
Various push–pull chromophores can be synthesized in a single and atom-economical step through [2 + 2] cycloaddition–retroelectrocyclization (CA–RE) reactions involving diverse electron-rich alkynes and electron-deficient alkenes. In this review, a comprehensive investigation of the recent and noteworthy advancements in the research on push–pull chromophores prepared via the [2 + 2] CA–RE reaction is conducted. In particular, an overview of the physicochemical properties of the family of these compounds that have been investigated is provided to clarify their potential for future applications.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Labrunie, Antoine, Pierre Josse, Sylvie Dabos-Seignon, Philippe Blanchard und Clément Cabanetos. „Pentaerythritol based push–pull tetramers for organic photovoltaics“. Sustainable Energy & Fuels 1, Nr. 9 (2017): 1921–27. http://dx.doi.org/10.1039/c7se00345e.

Der volle Inhalt der Quelle
Annotation:
We report herein the synthesis, characterization and preliminary evaluation of two simple tetramers based on the functionalization of a central pentaerythritol σ-linker with push–pull chromophores as molecular donor for organic photovoltaics.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Lepetit, Christine, Pascal G. Lacroix, Viviane Peyrou, Catherine Saccavini und Remi Chauvin. „Hyperpolarizability of novel carbo-meric push-pull chromophores“. Journal of Computational Methods in Sciences and Engineering 4, Nr. 4 (22.12.2004): 569–88. http://dx.doi.org/10.3233/jcm-2004-4404.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Breiten, Benjamin, Ivan Biaggio und François Diederich. „Nonplanar Push–Pull Chromophores for Opto-Electronic Applications“. CHIMIA International Journal for Chemistry 64, Nr. 6 (30.06.2010): 409–13. http://dx.doi.org/10.2533/chimia.2010.409.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Abbotto, A., L. Beverina, R. Bozio, S. Bradamante, C. Ferrante, G. A. Pagani und R. Signorini. „Push-Pull Organic Chromophores for Frequency-Upconverted Lasing“. Advanced Materials 12, Nr. 24 (Dezember 2000): 1963–67. http://dx.doi.org/10.1002/1521-4095(200012)12:24<1963::aid-adma1963>3.0.co;2-s.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Abdul Raheem, Abbasriyaludeen, Chitra Kumar, Ramasamy Shanmugam, P. Murugan und Chandrasekar Praveen. „Molecular engineering of twisted dipolar chromophores for efficiency boosted BHJ solar cells“. Journal of Materials Chemistry C 9, Nr. 13 (2021): 4562–75. http://dx.doi.org/10.1039/d1tc00708d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Lifshits, Liubov M., Darya S. Budkina, Varun Singh, Sergey M. Matveev, Alexander N. Tarnovsky und Jeremy K. Klosterman. „Solution-state photophysics of N-carbazolyl benzoate esters: dual emission and order of states in twisted push–pull chromophores“. Physical Chemistry Chemical Physics 18, Nr. 39 (2016): 27671–83. http://dx.doi.org/10.1039/c6cp04619c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Zhao, Yu, Chenhao Zhang, Kek Foo Chin, Oldřich Pytela, Guo Wei, Hongjun Liu, Filip Bureš und Zhiyong Jiang. „Dicyanopyrazine-derived push–pull chromophores for highly efficient photoredox catalysis“. RSC Adv. 4, Nr. 57 (2014): 30062–67. http://dx.doi.org/10.1039/c4ra05525j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Belén Marco, A., Denis Gindre, Konstantinos Iliopoulos, Santiago Franco, Raquel Andreu, David Canevet und Marc Sallé. „(Super)gelators derived from push–pull chromophores: synthesis, gelling properties and second harmonic generation“. Organic & Biomolecular Chemistry 16, Nr. 14 (2018): 2470–78. http://dx.doi.org/10.1039/c8ob00251g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Li, Chenge, Marie-Aude Plamont, Isabelle Aujard, Thomas Le Saux, Ludovic Jullien und Arnaud Gautier. „Design and characterization of red fluorogenic push–pull chromophores holding great potential for bioimaging and biosensing“. Organic & Biomolecular Chemistry 14, Nr. 39 (2016): 9253–61. http://dx.doi.org/10.1039/c6ob01612j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Danko, M., P. Hrdlovič, A. Martinická, A. Benda und M. Cigáň. „Spectral properties of ionic benzotristhiazole based donor–acceptor NLO-phores in polymer matrices and their one- and two-photon cellular imaging ability“. Photochemical & Photobiological Sciences 16, Nr. 12 (2017): 1832–44. http://dx.doi.org/10.1039/c7pp00239d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Kothoori, Naga Pranava Sree, Pandiyan Sivasakthi, Mallesham Baithy, Ramprasad Misra und Pralok K. Samanta. „Rational design and investigation of nonlinear optical response properties of pyrrolopyrrole aza-BODIPY-based novel push–pull chromophores“. RSC Advances 14, Nr. 22 (2024): 15560–70. http://dx.doi.org/10.1039/d4ra02861a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Zhang, Xuan, Ziqi Wen, Hongxing Zhang, Weihua Han, Jinyi Ma, Renbo Wei und Xiufu Hua. „Dielectric Properties of Azo Polymers: Effect of the Push-Pull Azo Chromophores“. International Journal of Polymer Science 2018 (2018): 1–10. http://dx.doi.org/10.1155/2018/4541937.

Der volle Inhalt der Quelle
Annotation:
The relationship between the structure and the dielectric properties of the azo polymers was studied. Four azo polymers were synthesized through the azo-coupling reaction between the same precursor (PAZ) and diazonium salts of 4-aminobenzoic acid ethyl ester, 4-aminobenzonitrile, 4-nitroaniline, and 2-amino-5-nitrothiazole, respectively. The precursor and azo polymers were characterized by 1H NMR, FT-IR, UV-vis, GPC, and DSC. The dielectric constant and dielectric loss of the samples were measured in the frequency range of 100 Hz–200 kHz. Due to the existence of the azo chromophores, the dielectric constant of the azo polymers increases compared with that of the precursor. In addition, the dielectric constant of the azo polymers increases with the increase of the polarity of the azo chromophores. A random copolymer (PAZ-NT-PAZ) composed of the azo polymer PAZ-NT and the precursor PAZ was also prepared to investigate the content of the azo chromophores on the dielectric properties of the azo polymers. It showed that the dielectric constant increases with the increase of the azo chromophores. The results show that the dielectric constant of this kind of azo polymers can be controlled by changing the structures and contents of azo chromophores during the preparation process.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Kautny, Paul, Florian Glöcklhofer, Thomas Kader, Jan-Michael Mewes, Berthold Stöger, Johannes Fröhlich, Daniel Lumpi und Felix Plasser. „Charge-transfer states in triazole linked donor–acceptor materials: strong effects of chemical modification and solvation“. Physical Chemistry Chemical Physics 19, Nr. 27 (2017): 18055–67. http://dx.doi.org/10.1039/c7cp01664f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Valdivia-Berroeta, Gabriel A., Karissa C. Kenney, Erika W. Jackson, Joseph C. Bloxham, Adam X. Wayment, Daniel J. Brock, Stacey J. Smith, Jeremy A. Johnson und David J. Michaelis. „6MNEP: a molecular cation with large hyperpolarizability and promise for nonlinear optical applications“. Journal of Materials Chemistry C 8, Nr. 32 (2020): 11079–87. http://dx.doi.org/10.1039/d0tc01829e.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Achelle, Sylvain, Alberto Barsella, Bertrand Caro und Françoise Robin-le Guen. „Donor–linker–acceptor (D–π–A) diazine chromophores with extended π-conjugated cores: synthesis, photophysical and second order nonlinear optical properties“. RSC Advances 5, Nr. 49 (2015): 39218–27. http://dx.doi.org/10.1039/c5ra05736a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Alain, Valérie, Mireille Blanchard-Desce, Isabelle Ledoux-Rak und Joseph Zyss. „Amphiphilic polyenic push–pull chromophores for nonlinear optical applications“. Chemical Communications, Nr. 5 (2000): 353–54. http://dx.doi.org/10.1039/a908717f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Iftime, Gabriel, Pascal G. Lacroix, Keitaro Nakatani und Alexandru C. Razus. „Push-pull azulene-based chromophores with nonlinear optical properties“. Tetrahedron Letters 39, Nr. 38 (September 1998): 6853–56. http://dx.doi.org/10.1016/s0040-4039(98)01495-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Rout, Yogajivan, Vivek Chauhan und Rajneesh Misra. „Synthesis and Characterization of Isoindigo-Based Push–Pull Chromophores“. Journal of Organic Chemistry 85, Nr. 7 (04.03.2020): 4611–18. http://dx.doi.org/10.1021/acs.joc.9b03267.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Niu, Songlin, Gilles Ulrich, Pascal Retailleau und Raymond Ziessel. „BODIPY-bridged push–pull chromophores: optical and electrochemical properties“. Tetrahedron Letters 52, Nr. 38 (September 2011): 4848–53. http://dx.doi.org/10.1016/j.tetlet.2011.07.028.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Podlesný, Jan, Veronika Jelínková, Oldřich Pytela, Milan Klikar und Filip Bureš. „Acceptor-induced photoisomerization in small thienothiophene push-pull chromophores“. Dyes and Pigments 179 (August 2020): 108398. http://dx.doi.org/10.1016/j.dyepig.2020.108398.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Ulrich, Gilles, Alberto Barsella, Alex Boeglin, Songlin Niu und Raymond Ziessel. „BODIPY-Bridged Push-Pull Chromophores for Nonlinear Optical Applications“. ChemPhysChem 15, Nr. 13 (20.06.2014): 2693–700. http://dx.doi.org/10.1002/cphc.201402123.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Klikar, Milan, Parmeshwar Solanke, Jiří Tydlitát und Filip Bureš. „Alphabet-Inspired Design of (Hetero)Aromatic Push-Pull Chromophores“. Chemical Record 16, Nr. 4 (07.06.2016): 1886–905. http://dx.doi.org/10.1002/tcr.201600032.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Zou, Jie, Di Zhang, Weilong Chen und Jingdong Luo. „Optimizing the vectorial component of first hyperpolarizabilities of push–pull chromophores to boost the electro-optic activities of poled polymers over broad telecom wavelength bands“. Materials Advances 2, Nr. 7 (2021): 2318–27. http://dx.doi.org/10.1039/d1ma00086a.

Der volle Inhalt der Quelle
Annotation:
Alternating the sequence of thiophene-based π-conjugation bridge of push–pull chromophores significantly improves the vectorial component of first hyperpolarizabilities and polar order of molecules for large electro-optic activities of poled films.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Burganov, T. I., S. A. Katsyuba, S. M. Sharipova, A. A. Kalinin, A. Monari und X. Assfeld. „Novel quinoxalinone-based push–pull chromophores with highly sensitive emission and absorption properties towards small structural modifications“. Physical Chemistry Chemical Physics 20, Nr. 33 (2018): 21515–27. http://dx.doi.org/10.1039/c8cp03780a.

Der volle Inhalt der Quelle
Annotation:
The photophysical properties of a series of novel push–pull quinoxalinone-based chromophores that strongly absorb and emit light in the broad visible spectrum were comprehensively studied both experimentally and through quantum chemical methods.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Balaji, N., M. R. Kannan, Y. Sheeba Sherlin und T. Vijayakumar. „Quantum Chemical Computations of an Efficient Push-Pull NLO Chromophore 3-[4-Nitrophenyl Azo]- 9H- Carbazole-9-Ethanol“. IOP Conference Series: Materials Science and Engineering 1219, Nr. 1 (01.01.2022): 012023. http://dx.doi.org/10.1088/1757-899x/1219/1/012023.

Der volle Inhalt der Quelle
Annotation:
Abstract Electric-optic (EO) materials are being explored for applications ranging from fiber and satellite telecommunications, optical gyroscopes, to photonic detection of radar etc. Dipolar push-pull Organic chromophores that exhibit extended π-conjugation, in particular, show enhanced second order NLO properties. The present investigation reports the quantum chemical computations of the high efficiency push-pull NLO molecule 3-[(4-Nitrophenyl Azo)] - 9H-Carbazole-9-Ethanol (NPACE). The organic push-pull molecule is optimized in gaseous and in various solvent condition using Exchange correlation function (B3LYP/MP2). Molecular electrostatic potential, thermal properties and NBO analysis have also been performed in detail. The effective electron cloud moment in the molecule is mainly governed by the physical process termed intramolecular Charge Transfer (ICT).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Bureš, Filip, Daniel Cvejn, Klára Melánová, Ludvík Beneš, Jan Svoboda, Vítězslav Zima, Oldřich Pytela et al. „Effect of intercalation and chromophore arrangement on the linear and nonlinear optical properties of model aminopyridine push–pull molecules“. Journal of Materials Chemistry C 4, Nr. 3 (2016): 468–78. http://dx.doi.org/10.1039/c5tc03499j.

Der volle Inhalt der Quelle
Annotation:
Three push–pull aminopyridine derivatives having D–π–A, D–(π–A)2, and D–(π–A)3 arrangements were examined as model organic chromophores capable of intercalation into inorganic layered materials.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Swager, Timothy, und Cagatay Dengiz. „Homoconjugated and Spiro Push–Pull Systems: Cycloadditions of Naphtho- and Anthradiquinones with Electron-Rich Alkynes“. Synlett 28, Nr. 12 (11.04.2017): 1427–31. http://dx.doi.org/10.1055/s-0036-1588771.

Der volle Inhalt der Quelle
Annotation:
We report the synthesis and characterization of three new classes of push–pull chromophores using [2+2]-cycloaddition reactions of electron-rich alkynes and electron-poor alkenes. Previous investigations have focused on the reactions of cyano-substituted electron acceptors. This study demonstrates that cyano-free electron acceptors, naphtho- and anthradiquinones, can also be used to access extended push–pull systems. The effects of the structural changes on the spectroscopic and electronic properties were investigated by UV/vis spectroscopy. Structures were confirmed by X-ray and NMR analysis in solution.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Podlesný, Jan, Oldřich Pytela, Milan Klikar, Veronika Jelínková, Iwan V. Kityk, Katarzyna Ozga, Jaroslaw Jedryka, Myron Rudysh und Filip Bureš. „Small isomeric push–pull chromophores based on thienothiophenes with tunable optical (non)linearities“. Organic & Biomolecular Chemistry 17, Nr. 14 (2019): 3623–34. http://dx.doi.org/10.1039/c9ob00487d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Brusatin, Giovanna, Plinio Innocenzi, Alessandro Abbotto, Luca Beverina, Giorgio A. Pagani, Mauro Casalboni, Felice Sarcinelli und Roberto Pizzoferrato. „Hybrid organic–inorganic materials containing poled zwitterionic push–pull chromophores“. Journal of the European Ceramic Society 24, Nr. 6 (Januar 2004): 1853–56. http://dx.doi.org/10.1016/s0955-2219(03)00601-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Moran, Andrew M., Anne Myers Kelley und Sergei Tretiak. „Excited state molecular dynamics simulations of nonlinear push–pull chromophores“. Chemical Physics Letters 367, Nr. 3-4 (Januar 2003): 293–307. http://dx.doi.org/10.1016/s0009-2614(02)01583-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Centore, Roberto, Alain Fort, Barbara Panunzi, Antonio Roviello und Angela Tuzi. „Second order molecular nonlinearities in new orthopalladated push–pull chromophores“. Inorganica Chimica Acta 357, Nr. 4 (März 2004): 913–18. http://dx.doi.org/10.1016/j.ica.2003.06.020.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Tonga, Murat. „Tunable optical properties of push-pull chromophores: End group effect“. Tetrahedron Letters 61, Nr. 32 (August 2020): 152205. http://dx.doi.org/10.1016/j.tetlet.2020.152205.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Painelli, A., L. Del Freo und F. Terenziani. „Understanding non–linearity: a simple model for push–pull chromophores“. Synthetic Metals 121, Nr. 1-3 (März 2001): 1465–66. http://dx.doi.org/10.1016/s0379-6779(00)00823-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Gunaratne, Tissa, J. Reddy Challa und M. Cather Simpson. „Energy Flow in Push-Pull Chromophores: Vibrational Dynamics inpara-Nitroaniline“. ChemPhysChem 6, Nr. 6 (13.06.2005): 1157–63. http://dx.doi.org/10.1002/cphc.200400288.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Chen, Ying, Ran Lu, WenYan Wang, Quan Wang, Xiao‐Chun Chi und Han‐Zhuang Zhang. „Solvent‐dependent ultrafast optical response of conjugated push–pull chromophores“. Luminescence 35, Nr. 4 (07.01.2020): 572–79. http://dx.doi.org/10.1002/bio.3758.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Ortíz, Alejandro, Braulio Insuasty, M. Rosario Torres, M. Ángeles Herranz, Nazario Martín, Rafael Viruela und Enrique Ortí. „Aminopyrimidine-Based Donor–Acceptor Chromophores: Push–Pull versus Aromatic Behaviour“. European Journal of Organic Chemistry 2008, Nr. 1 (Januar 2008): 99–108. http://dx.doi.org/10.1002/ejoc.200700718.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Turan, Haydar Taylan, Oğuzhan Kucur, Birce Kahraman, Seyhan Salman und Viktorya Aviyente. „Design of donor–acceptor copolymers for organic photovoltaic materials: a computational study“. Physical Chemistry Chemical Physics 20, Nr. 5 (2018): 3581–91. http://dx.doi.org/10.1039/c7cp08176f.

Der volle Inhalt der Quelle
Annotation:
80 different push–pull type organic chromophores which possess Donor–Acceptor (D–A) and Donor–Thiophene–Donor–Thiophene (D–T–A–T) structures have been systematically investigated by means of density functional theory (DFT) and time-dependent DFT (TD-DFT) at the B3LYP/6-311G* level.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Painelli, Anna, und Francesca Terenziani. „Optical Spectra of Push−Pull Chromophores in Solution: A Simple Model“. Journal of Physical Chemistry A 104, Nr. 47 (November 2000): 11041–48. http://dx.doi.org/10.1021/jp0016075.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Barsu, Cyril, Rouba Cheaib, Stéphane Chambert, Yves Queneau, Olivier Maury, Davy Cottet, Hartmut Wege, Julien Douady, Yann Bretonnière und Chantal Andraud. „Neutral push-pull chromophores for nonlinear optical imaging of cell membranes“. Org. Biomol. Chem. 8, Nr. 1 (2010): 142–50. http://dx.doi.org/10.1039/b915654b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Lehmann, C. W., und T. Dols. „Dipole moment determination in push-pull chromophores from charge density data“. Acta Crystallographica Section A Foundations of Crystallography 67, a1 (22.08.2011): C514—C515. http://dx.doi.org/10.1107/s0108767311086971.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Innocenzi, Plinio, Enrico Miorin, Giovanna Brusatin, Alessandro Abbotto, Luca Beverina, Giorgio A. Pagani, Mauro Casalboni, Felice Sarcinelli und Roberto Pizzoferrato. „Incorporation of Zwitterionic Push−Pull Chromophores into Hybrid Organic−Inorganic Matrixes“. Chemistry of Materials 14, Nr. 9 (September 2002): 3758–66. http://dx.doi.org/10.1021/cm011231n.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Painelli, Anna, und Francesca Terenziani. „A non-perturbative approach to solvatochromic shifts of push–pull chromophores“. Chemical Physics Letters 312, Nr. 2-4 (Oktober 1999): 211–20. http://dx.doi.org/10.1016/s0009-2614(99)00960-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Inoue, Shinobu, Yoshio Aso und Tetsuo Otsubo. „Push-pull type of diphenoquinoid chromophores as novel near-infrared dyes“. Chemical Communications, Nr. 12 (1997): 1105–6. http://dx.doi.org/10.1039/a701626c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

IFTIME, G., P. G. LACROIX, K. NAKATANI und A. C. RAZUS. „ChemInform Abstract: Push-Pull Azulene-Based Chromophores with Nonlinear Optical Properties.“ ChemInform 29, Nr. 49 (18.06.2010): no. http://dx.doi.org/10.1002/chin.199849100.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie