Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Purification par résine“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Purification par résine" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Purification par résine"
Chahi, A., F. Weber, L. Prevot und J. Lucas. „L’Utilisation des Resines Echangeuses de Cations (Amberlite IRC-50H) dans la Dispersion et la Purification des Argiles des Roches a Carbonates, Phosphates et Sulfates“. Clay Minerals 28, Nr. 4 (Dezember 1993): 585–601. http://dx.doi.org/10.1180/claymin.1993.028.4.08.
Der volle Inhalt der QuelleDesquesnes, Marc, und Laurent Tresse. „Evaluation de la sensibilité de la PCR pour la détection de l'ADN de Trypanosoma vivax selon divers modes de préparation des échantillons sanguins“. Revue d’élevage et de médecine vétérinaire des pays tropicaux 49, Nr. 4 (01.04.1996): 322–27. http://dx.doi.org/10.19182/remvt.9504.
Der volle Inhalt der QuelleGalzin, AM, D. Graham und SZ Langer. „Systèmes de transport de la sérotonine et antidépresseurs“. Psychiatry and Psychobiology 5, Nr. 3 (1990): 201–7. http://dx.doi.org/10.1017/s0767399x00003503.
Der volle Inhalt der QuelleDissertationen zum Thema "Purification par résine"
Cony, Stéphanie. „Déconstruction raisonnée par voie enzymatique des hétéroxylanes de la biomasse lignocellulosique et purification éco-compatible des différentes fractions fonctionnelles“. Thesis, Reims, 2017. http://www.theses.fr/2017REIMS020.
Der volle Inhalt der QuelleAgriculture by-products (wheat bran and straw) are rich in arabinoxylans (AX). These polymers composed of a main chain of β-(1,4) linked xylose ramified by arabinose and ferulic acid, are sources of molecules for various applications: xylooligosaccharides as prebiotics, xylose to synthesize xylitol, a non-cariogenic sweetener, or ferulic acid as a precursor of vanillin or an antioxidant molecule for packaging applications. The aim of this work was to set up an eco-friendly process ranging from wheat bran AX hydrolysis to ferulic acid purification.Hemicellulasic cocktails obtained by growing Thermobacillus xylanilyticus on wheat straw or wheat bran were implemented in various conditions. They released a carbohydrate fraction (mono- and oligosaccharides) and ferulic acid. In order to increase the monomerization, two new β-xylosidases were grown from T. xylanilyticus and characterized. They were tested to supplement the complex hemicellulasic cocktails from T. xylanilyticus and studied in mixture with a pure xylanase and a pure arabinosidase.The choice of a weak anionic resin under free base form to separate the glucidic and the phenolic fractions and to purify ferulic acid was also driven by environnement purposes: Amberlyst A21 resin showed a good affinity for ferulic acid and regeneration allowed a concentrated fraction of ferulate to be obtained. Prior demineralization by electrodialysis increased the capacity of the resin for ferulic acid and the purity of the recovered fraction, potentially allowing crystallization
Diemer, Étienne. „Intensification du procédé d’extraction, de purification et de fonctionnalisation des acides caféoylquiniques à partir de coproduits de la culture de l’endive“. Electronic Thesis or Diss., Compiègne, 2024. http://www.theses.fr/2024COMP2821.
Der volle Inhalt der QuelleForced chicory root is a by-product of Belgian endive culture, a typical crop of northern France, Belgium and the Netherlands. Currently under-utilized in methanation or animal feed, this by-product contains molecules of interest: caffeoylquinic acids. These molecules have antioxidant and anti-inflammatory properties, and a potential for reducing metabolic disorders. This thesis aims to intensify the pre-treatment, extraction, purification and functionalization of caffeoylquinic acids from forced chicory roots to develop new bioactive biosourced molecules of potential interest to the cosmetics and nutraceutical sectors. The final part of the thesis deals with a technico-economical study of the process to estimate its economic profitability in relation to the targeted application sector. The first part focuses on the effect of conventional pretreatments (cutting and drying) and the effect of pulsed electric field pretreatment on caffeoylquinic acid content in biomass. The effect of adding an antioxidant solution during extraction is also investigated. Secondly, extraction optimization is carried out using dry or fresh biomass. The influence of factors such as temperature, solid/liquid ratio and solvent type were studied. In addition, extraction kinetics were performed to study kinetic parameters using empirical models. As the purity of the extract obtained is low, purification steps are needed. The thesis then focused on purifying the crude extract obtained using macroporous resins and liquid/liquid extraction. For resin purification, resin screening was carried out, followed by optimization of the purification operating conditions with the chosen resin. Models of adsorption phenomena are carried out to identify the limiting stages and the maximum adsorption capacity. For liquid/liquid extraction, green solvent screening is carried out on aqueous and hydro-ethanolic media, followed by optimization of operating conditions with the best solvent. The penultimate part of the thesis seeks to functionalize caffeoylquinic acids by esterification, starting with a model solution and then a real extract. Esterification conditions are optimized to increase both reaction speed and conversion rate. Esters with different chain lengths were obtained, and biological activities such as antioxidant activity and anti-UV properties were studied. Functionalization is also performed with real extract. A technico-economic study concludes the thesis, opening up prospects for the industrialization of the forced chicory roots valorization process
Hébert, Mathieu. „Nouvelles approches pour la valorisation des graines de moutarde riches en glucosinolates dans un concept de bioraffinerie“. Thesis, Compiègne, 2020. http://www.theses.fr/2020COMP2552.
Der volle Inhalt der QuelleThis thesis is specifically dedicated to the valorization of B. juncea (brown mustard) as catch-crops in order to develop innovative ways of valorization for the different components of mustard seeds (oil, meal, glucosinolates) for industrial and/or food applications according to the principles of biorefinery and in a sustainable development concept. The rich-erucic acid mustard oil could be valorized in oleochemistry for many applications (cosmetics, lubricants, biofuels etc.), the defatted cake could be an alternative and new source of high quality proteins for animal food and the extracted glucosinolates (sinigrin and gluconapin) could be very suitable for the development of a natural bio-pesticide instead of chemical pesticides. Applications of different pretreatments were firstly applied on seeds in order to perform the intern inactivation of myrosinase, an enzyme that degrades glucosinolates by hydrolysis: conventional heating in bath-water, micro-waves (MW) and supercritical CO2 (SC-CO2). Heating seeds at 80°C for 70 min allowed efficient myrosinase inactivation (98%) without impact on other molecules (glucosinolates, proteins). The treatment resulted also in better oil expression performances. Oil expression from treated seeds was then performed by carring out two successive pressing (80 bar, 60 min) with an hydraulic press to express 84% of oil and obtain a rich in proteins (35.8-40.8%) and intact glucosinolates (144-158 µmol/g) defatted cake. Intensification of the extraction of glucosinolates was investigated meaning different pretreaments and processes: grinding, high-voltage electric discharges (HVED) and ultrasounds (US). Only green solvents were used for the extraction (water, ethanol). Preliminar optimization of chemical extraction resulted in selective extraction of 90% of GSL using an aqueous ethanol solution (40% v:v) at 40°C without affecting protein content from residual cake (36-40%). These conditions could be claimed as an effective alternative to the conventionel extraction protocol (75% methanol, 75°C). The assisted-extraction of GSL by HVED (U = 40 kV, tDEHT = 3.5 ms) has performed the recovery of 98% of intact GSL in milder conditions (T = 30°C, water, QDEHT = 233 kJ/kg) by minimizing the co-extraction of proteins from meal. Purification of crude juice was investigated meaning two different techniques: ion-exchange chromatography (IEC) and ultrafiltration (UF). GSL purification by IEC was preliminarly optimized in batch and proteins and GSL were separated meaning a strong basic resin (PA312LOH). 72.9% of sinigrine recovery was performed bu eluting with a NaCl solution (1.0 M, 30°C, 300 rpm, 40 mL/g resin) with a juice purity of 79.6%. Dynamic experiments allowed recovery of 28% of gluconapin (2.6 BV/h, pH 4.0). Membrane process (UF) showed better performances with the recovery of 98% and 60% of sinigrin and gluconapin respectively with a permeate purity of 90% by using PES membranes of 10 kDa (5 bars, 500 rpm). The purified juice (90%) rich in sinigrin (3.36 mg/ml) and gluconapin (0.16 mg/ml) could be used to develop a phytosanitory product for crop protection. The residual detoxified (<20 µmol GSL/g DM) and rich in proteins meal could be very suitable for animal feeding