Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Pulmonary Pathophysiology“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Pulmonary Pathophysiology" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Pulmonary Pathophysiology"
Cherniack, Neil S. „Pulmonary Pathophysiology“. Annals of Internal Medicine 131, Nr. 5 (07.09.1999): 399. http://dx.doi.org/10.7326/0003-4819-131-5-199909070-00022.
Der volle Inhalt der QuelleGonzalez, Norberto C. „PULMONARY PATHOPHYSIOLOGY“. Shock 11, Nr. 2 (Februar 1999): 152. http://dx.doi.org/10.1097/00024382-199902000-00018.
Der volle Inhalt der QuelleGrippi, Michael A. „PULMONARY PATHOPHYSIOLOGY“. Shock 5, Nr. 4 (April 1996): 311. http://dx.doi.org/10.1097/00024382-199604000-00013.
Der volle Inhalt der QuelleChamarthy, Murthy R., Asha Kandathil und Sanjeeva P. Kalva. „Pulmonary vascular pathophysiology“. Cardiovascular Diagnosis and Therapy 8, Nr. 3 (Juni 2018): 208–13. http://dx.doi.org/10.21037/cdt.2018.01.08.
Der volle Inhalt der QuelleGao, Yuansheng, und J. Usha Raj. „Pathophysiology of Pulmonary Hypertension“. Colloquium Series on Integrated Systems Physiology: From Molecule to Function 9, Nr. 6 (22.11.2017): i—104. http://dx.doi.org/10.4199/c00158ed1v01y201710isp078.
Der volle Inhalt der QuelleAngerio, Allan D., und Peter A. Kot. „Pathophysiology of pulmonary edema“. Critical Care Nursing Quarterly 17, Nr. 3 (November 1994): 21–26. http://dx.doi.org/10.1097/00002727-199411000-00004.
Der volle Inhalt der QuelleHigenbottam, Tim. „Pathophysiology of Pulmonary Hypertension“. Chest 105, Nr. 2 (Februar 1994): 7S—12S. http://dx.doi.org/10.1378/chest.105.2_supplement.7s.
Der volle Inhalt der QuelleKlayton, Ronald J. „PULMONARY PATHOPHYSIOLOGY — THE ESSENTIALS“. Military Medicine 158, Nr. 2 (01.02.1993): A9. http://dx.doi.org/10.1093/milmed/158.2.a9a.
Der volle Inhalt der QuelleShibuya, Kazutoshi, Chikako Hasegawa, Shigeharu Hamatani, Tsutomu Hatori, Tadashi Nagayama, Hiroko Nonaka, Tsunehiro Ando und Megumi Wakayama. „Pathophysiology of pulmonary aspergillosis“. Journal of Infection and Chemotherapy 10, Nr. 3 (2004): 138–45. http://dx.doi.org/10.1007/s10156-004-0315-5.
Der volle Inhalt der QuelleMatthay, Michael A. „Pathophysiology of Pulmonary Edema“. Clinics in Chest Medicine 6, Nr. 3 (September 1985): 301–14. http://dx.doi.org/10.1016/s0272-5231(21)00366-x.
Der volle Inhalt der QuelleDissertationen zum Thema "Pulmonary Pathophysiology"
Walsh, Robert Leo. „Leukocyte elastase and anti-elastases in pulmonary emphysema“. Title page, contents and abstract only, 2001. http://web4.library.adelaide.edu.au/theses/09PH/09phw2261.pdf.
Der volle Inhalt der QuelleMuzaffar, Saima. „Reactive oxygen species and the pathophysiology of adult respiratory distress syndrome“. Thesis, University of Bristol, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.271916.
Der volle Inhalt der QuelleTauriainen, M. Peter. „Negative pressure pulmonary edema, a clinical review and study of its pathophysiology“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq23521.pdf.
Der volle Inhalt der QuelleOtsuka, Kojiro. „Sputum YKL-40 Levels and Pathophysiology of Asthma and Chronic Obstructive Pulmonary Disease“. Kyoto University, 2012. http://hdl.handle.net/2433/152498.
Der volle Inhalt der QuelleMcLennan, Geoffrey. „Oxygen toxicity and radiation injury to the pulmonary system“. Title page, index and forward only, 1997. http://web4.library.adelaide.edu.au/theses/09PH/09phm164.pdf.
Der volle Inhalt der QuelleMittal, Manish [Verfasser]. „Role of NADPH oxidases and KDR channels in the pathophysiology of hypoxia induced pulmonary hypertension / Manish Mittal“. Gießen : Universitätsbibliothek, 2009. http://d-nb.info/1060563207/34.
Der volle Inhalt der QuelleMason, Nicholas. „Mechanisms of altitude-related cough“. Doctoral thesis, Universite Libre de Bruxelles, 2012. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209711.
Der volle Inhalt der QuelleWidespread reports have long existed of a debilitating cough affecting visitors to high altitude that can incapacitate the sufferer and, on occasions, be severe enough to cause rib fractures (22, 34, 35). The prevalence of cough at altitude has been estimated to be between 22 and 42% at between 4200 and 4900 m in the Everest region of Nepal (10, 29). Traditionally the cough was attributed to the inspiration of the cold, dry air characteristic of the high altitude environment (37) but no attempts were made to confirm this aetiology. In the first formal study of cough at high altitude, nocturnal cough frequency was found to increase with increasing altitude during a trek to Everest Base Camp (5300 m) and massively so in 3 climbers on whom recordings were made up to 7000 m on Everest (8). After 9 days at 5300 m the citric acid cough threshold, a measure of the sensitivity of the cough reflex arc, was significantly reduced compared with both sea level and arrival at 5300 m.
During Operation Everest II, a simulated climb of Mount Everest in a hypobaric chamber, the majority of the subjects were troubled above 7000 m by pain and dryness in the throat and an irritating cough despite the chamber being maintained at a relative humidity of between 72 and 82% and a temperature of 23ºC (18). This argued against the widely held view that altitude-related cough was due to the inspiration of cold, dry air.
In the next major hypobaric chamber study, Operation Everest III, nocturnal cough frequency and citric acid cough threshold were measured on the 8 subjects in the study. The chamber temperature was maintained between 18 and 24ºC and relative humidity between 30 and 60% (24). This work is presented in Chapter 2 and, demonstrated an increase in nocturnal cough frequency with increasing altitude which immediately returned to control values on descent to sea level. Citric acid cough threshold was reduced at 8000 m compared to both sea level and 5000 m values. Changes in citric acid cough threshold at lower altitudes may not have been detected because of the constraints on subject numbers in the chamber. The study still however demonstrated an increase in clinical cough and a reduction in the citric acid cough threshold at extreme altitude, despite controlled environmental conditions, and thus refuted the long held belief that altitude-related cough is solely due to the inspiration of cold, dry air.
If altitude-related cough is not simply due to the inspiration of cold, dry air, other possible aetiologies are:
•\
Doctorat en Sciences médicales
info:eu-repo/semantics/nonPublished
Yoshioka, Eliane Muta. „Alterações pulmonares e sistêmicas em modelo de lesão pulmonar aguda de etiologia pulmonar e extra pulmonar após ventilação mecânica de curto prazo“. Universidade de São Paulo, 2010. http://www.teses.usp.br/teses/disponiveis/5/5144/tde-03092010-144329/.
Der volle Inhalt der QuelleLung inflammation may vary according to the primary site of injury and may be affected by the mechanical stress generated by mechanical ventilation (MV). Objectives: to address possible differences in lung and systemic responses in pulmonary and extra pulmonary ALI after mechanical ventilation. Methods: BALB/c mice were divided in twelve groups of six animals. In pulmonary and extrapulmonary control or ALI groups received either saline or LPS (intratracheally instilled or intraperitoneally injected), respectively. Ventilated groups were either recruited or not with a single recruitment maneuver (SRM) reaching 45 cm H2O. Results: At baseline ALI P and ALI EXP non ventilated groups presented the same level of inflammation; a statistically significant difference in density of inflammatory cells was noted in ALI P MV (3,84±1,28 cells/2) compared to ALI EXP MV (1,75±0,14 cells/2), p=0,013. The same was observed in ALI P SRM (2,92±0,44 cells/2) compared to ALI EXP SRM (1,46±0,23 cells/2) ventilated groups (p<0,0001). ALI P showed a statistically significant increase in El (56,19 ± 12,26 cm H2O) in comparison to ALI EXP (26,88 ± 36,38 cm H2O) after SRM (p = 0,029). No statistical differences were observed in kidney oxidative stress. Conclusion: We observed a different pattern of response in lung inflammation and mechanics comparing pulmonary and extra pulmonary ALI, submitted to short term mechanical ventilation. Although mechanical ventilation represents a fundamental tool to stabilize critical patients, it is essential to individualize the approach of the ventilatory treatment
Rondelet, Benoît. „Médiation humorale de l'hypertension artérielle pulmonaire dans un modèle de cardiopathie congénitale à shunt systémo-pulmonaire chez le porcelet en croissance“. Doctoral thesis, Universite Libre de Bruxelles, 2008. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210373.
Der volle Inhalt der QuelleAissa, Jamal. „Pathophysiologie et pharmacologie cardio-pulmonaire et inflammatoire du PAF-ACETHER“. Paris 5, 1993. http://www.theses.fr/1993PA05CD07.
Der volle Inhalt der QuelleBücher zum Thema "Pulmonary Pathophysiology"
Pulmonary pathophysiology. Philadelphia: Lippincott, 1995.
Den vollen Inhalt der Quelle findenPulmonary pathophysiology: The essentials. 7. Aufl. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins, 2008.
Den vollen Inhalt der Quelle findenB, West John, Hrsg. Pulmonary pathophysiology--the essentials. 4. Aufl. Baltimore: Williams & Wilkins, 1992.
Den vollen Inhalt der Quelle findenWest, John B. (John Burnard), Hrsg. Pulmonary pathophysiology: The essentials. 8. Aufl. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins Health, 2012.
Den vollen Inhalt der Quelle findenPulmonary pathophysiology: The essentials. 3. Aufl. Baltimore: Williams & Wilkins, 1987.
Den vollen Inhalt der Quelle findenB, West John, Hrsg. Pulmonary pathophysiology--the essentials. 5. Aufl. Baltimore, Md: Williams & Wilkins, 1998.
Den vollen Inhalt der Quelle findenPulmonary pathophysiology: A clinical approach. 3. Aufl. New York: McGraw-Hill Medical, 2010.
Den vollen Inhalt der Quelle findenWorkshop on "Chronic Pulmonary Hyperinflation" (1988 Montescano, Italy). Chronic pulmonary hyperinflation. London: Springer-Verlag, 1989.
Den vollen Inhalt der Quelle findenPulmonary circulation: Diseases and their treatment. 3. Aufl. London: Hodder Arnold, 2011.
Den vollen Inhalt der Quelle findenBittar, E. Edward. Pulmonary biology in health and disease. Herausgegeben von Springer-Verlag. New York: Springer, 2002.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Pulmonary Pathophysiology"
Kaul, Sunny. „Pathophysiology“. In Managing Chronic Obstructive Pulmonary Disease, 1–12. West Sussex, England: John Wiley & Sons Ltd, 2008. http://dx.doi.org/10.1002/9780470697603.ch1.
Der volle Inhalt der QuelleVanzeller, Mafalda, Marta Drummond und João Carlos Winck. „Chronic respiratory failure – pathophysiology“. In Pulmonary Rehabilitation, 399–408. Second edition. | Boca Raton : CRC Press, [2020] | Preceded by Pulmonary rehabilitation / Claudio F. Donner, Nicolino Ambrosino, Roger Goldstein. 2005.: CRC Press, 2020. http://dx.doi.org/10.1201/9781351015592-41.
Der volle Inhalt der QuelleRabinovitch, Marlene. „Pulmonary Vascular Pathophysiology“. In Pediatric Cardiovascular Medicine, 71–80. Oxford, UK: Wiley-Blackwell, 2012. http://dx.doi.org/10.1002/9781444398786.ch5.
Der volle Inhalt der QuelleLajoie, Annie C., Vincent Mainguy, SéBastien Bonnet und Steeve Provencher. „Pulmonary vascular diseases“. In Applied Respiratory Pathophysiology, 119–47. Boca Raton : CRC Press, [2017]: CRC Press, 2017. http://dx.doi.org/10.1201/9781315177052-7.
Der volle Inhalt der QuelleMilot, Julie, und Mathieu Morissette. „Chronic obstructive pulmonary disease“. In Applied Respiratory Pathophysiology, 97–118. Boca Raton : CRC Press, [2017]: CRC Press, 2017. http://dx.doi.org/10.1201/9781315177052-6.
Der volle Inhalt der QuelleSchols, Annemie M. W. J., und Emiel F. M. Wouters. „Pulmonary rehabilitation“. In Recent Advances in the Pathophysiology of COPD, 167–87. Basel: Birkhäuser Basel, 2004. http://dx.doi.org/10.1007/978-3-0348-7939-2_11.
Der volle Inhalt der QuelleSchrump, David S. „Pulmonary Malignancies: Pathophysiology and Treatment“. In Principles and Practice of Geriatric Surgery, 406–32. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4757-3432-4_29.
Der volle Inhalt der QuelleRizzo, Alicia N., Dustin R. Fraidenburg und Jason X. J. Yuan. „Pulmonary Vascular Physiology and Pathophysiology“. In PanVascular Medicine, 4057–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-37078-6_202.
Der volle Inhalt der QuelleRizzo, Alicia N., Dustin R. Fraidenburg und Jason X. J. Yuan. „Pulmonary Vascular Physiology and Pathophysiology“. In PanVascular Medicine, 1–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-37393-0_202-1.
Der volle Inhalt der QuelleMitani, Yoshihide. „Pathophysiology and Genetics: BMPR2“. In Diagnosis and Treatment of Pulmonary Hypertension, 115–24. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-287-840-3_9.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Pulmonary Pathophysiology"
Zhao, Y. C., S. E. Rees, S. Andreassen und S. Kjaergaard. „Simulation of Pulmonary Pathophysiology During Spontaneous Breathing“. In 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. IEEE, 2005. http://dx.doi.org/10.1109/iembs.2005.1615892.
Der volle Inhalt der QuelleGhanem, M., A. Justet, M. Jaillet, M. Hachem, T. Boghanim, A. Vadel, A. Mailleux und B. Crestani. „Involvement of FGFR4 in Pulmonary Fibrosis Pathophysiology“. In American Thoracic Society 2021 International Conference, May 14-19, 2021 - San Diego, CA. American Thoracic Society, 2021. http://dx.doi.org/10.1164/ajrccm-conference.2021.203.1_meetingabstracts.a4220.
Der volle Inhalt der QuelleLammers, Steven R., Phil H. Kao, Lian Tian, Kendall Hunter, H. Jerry Qi, Joseph Albietz, Stephen Hofmeister, Kurt Stenmark und Robin Shandas. „Quantification of Elastin Residual Stretch in Fresh Artery Tissue: Impact on Artery Material Properties and Pulmonary Hypertension Pathophysiology“. In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206793.
Der volle Inhalt der QuelleSiler, S. Q., D. Longo, J. Woodhead, C. Battista, Z. Kenz, S. Tallapaka, G. Liu, G. Generaux, S. Ermakov und L. Shoda. „Using Quantitative Systems Pharmacology Modeling to Understand the Pathophysiology of Idiopathic Pulmonary Fibrosis“. In American Thoracic Society 2021 International Conference, May 14-19, 2021 - San Diego, CA. American Thoracic Society, 2021. http://dx.doi.org/10.1164/ajrccm-conference.2021.203.1_meetingabstracts.a4648.
Der volle Inhalt der QuelleAlamer, Amal, Rhys Jones, Chris Ward, Michael Drinnan, Alexander John Simpson, Michael Griffin, Joanne Patterson und Ian Forrest. „Oropharyngeal swallowing pathophysiology in patients with idiopathic pulmonary fibrosis: A consecutive descriptive case series“. In ERS International Congress 2020 abstracts. European Respiratory Society, 2020. http://dx.doi.org/10.1183/13993003.congress-2020.3370.
Der volle Inhalt der QuelleDumas, Sébastien J., Frédéric Perros, Catherine Rucker-Martin, Elodie Gouadon, Marc J. C. Humbert und Sylvia Cohen-Kaminsky. „Glutamate And NMDA Receptors: New Signaling Pathway Involved In The Pathophysiology Of Pulmonary Hypertension“. In American Thoracic Society 2012 International Conference, May 18-23, 2012 • San Francisco, California. American Thoracic Society, 2012. http://dx.doi.org/10.1164/ajrccm-conference.2012.185.1_meetingabstracts.a4747.
Der volle Inhalt der QuelleAlamer, A., R. Jones, C. Ward, M. Drinnan, AJ Simpson, M. Griffin, J. Patterson und I. Forrest. „S127 Oropharyngeal swallowing pathophysiology in patients with idiopathic pulmonary fibrosis: A consecutive descriptive case series“. In British Thoracic Society Winter Meeting, Wednesday 17 to Friday 19 February 2021, Programme and Abstracts. BMJ Publishing Group Ltd and British Thoracic Society, 2021. http://dx.doi.org/10.1136/thorax-2020-btsabstracts.132.
Der volle Inhalt der QuelleHe, M., K. Qing, N. Tustison, L. A. Myc, J. MacLeod, R. Nunoo-Asare, J. Cassani et al. „Probing Early-Stage Pulmonary Pathophysiology in Young Healthy E-cigarettes Users Using Hyperpolarized 129Xe MRI“. In American Thoracic Society 2021 International Conference, May 14-19, 2021 - San Diego, CA. American Thoracic Society, 2021. http://dx.doi.org/10.1164/ajrccm-conference.2021.203.1_meetingabstracts.a1113.
Der volle Inhalt der QuelleTan, Yan, und Wei Tan. „Reducing Upstream Compliance Induces Downstream High Pulsatility Flow-Dependent Inflammatory Response in Pulmonary Endothelial Cells via TLR2/NF-KB Pathway“. In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80900.
Der volle Inhalt der QuelleLee, Namheon, Michael D. Taylor, Kan N. Hor und Rupak K. Banerjee. „Non-Invasive Calculation of Energy Loss in Pulmonary Arteries Using 4D Phase Contrast MRI Measurement“. In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80525.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Pulmonary Pathophysiology"
Hurt, Holcombe H., Suzanne A. Hernandez, Wallace B. Baze, Theresa M. Tezak-Reid und Jill R. Keeler. Pathophysiologic Mechanisms of Three Pulmonary Edemagenic Compounds: The Role of Toxic Oxygen Species. Fort Belvoir, VA: Defense Technical Information Center, April 1992. http://dx.doi.org/10.21236/ada251135.
Der volle Inhalt der Quelle