Auswahl der wissenschaftlichen Literatur zum Thema „Pseudocyclic electron transport“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Pseudocyclic electron transport" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Pseudocyclic electron transport"

1

Goetze, D. Christoper, und Robert Carpentier. „Ferredoxin–NADP+ reductase is the site of oxygen reduction in pseudocyclic electron transport“. Canadian Journal of Botany 72, Nr. 2 (01.02.1994): 256–60. http://dx.doi.org/10.1139/b94-034.

Der volle Inhalt der Quelle
Annotation:
The effects of ferredoxin (Fd) and Fd–NADP+ reductase (FNR) on the oxygen photoreduction by photosystem I (PS I) in spinach (Spinacia oleracea L.) thylakoid membranes were investigated using a unique photoelectrochemical cell. This cell was previously shown to monitor the Mehler reaction products of photosynthetic oxygen reduction and represents an excellent tool for studying pseudocyclic electron transport. The magnitude of the photocurrent produced by the thylakoids was increased by as much as 40% in the presence of 60 μM Fd. If thylakoids were supplemented by both Fd and FNR, an additional increase of photocurrent was observed. All these reactions were inhibited by catalase, an enzyme that degrades H2O2, to demonstrate that O2 reduction was involved in all the photoreactions studied. The fact that more O2 was consumed in the presence of FNR was interpreted as evidence that the most effective site of oxygen reduction on the acceptor side of PS I is on FNR and not on Fd. The in vivo implication is that during pseudocyclic electron transport, NADP+ and oxygen directly compete for PS I electrons, with the former having significantly faster reaction kinetics. The advantageous physiological consequences of such a competition are (i) pseudocyclic electron transport would represent a true attenuating mechanism of the redox state of the NADP+–NADPH pool, (ii) oxygen would be a contingent acceptor under high illumination stress, helping to cope with the resultant elevated electron transport rates, and (iii) this mechanism is indisputably a faster response to stress than cyclic electron transport. Key words: Spinacia oleracea, photosystem I, thylakoid membranes, ferredoxin–NADP+ reductase, pseudocyclic electron transport, photoelectrochemistry.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Tikhonov, A. N. „Electron transport in chloroplasts: regulation and alternative pathways of electron transfer“. Биохимия 88, Nr. 10 (15.12.2023): 1742–60. http://dx.doi.org/10.31857/s0320972523100032.

Der volle Inhalt der Quelle
Annotation:
This work represents an overview of electron transport regulation in chloroplasts as considered in the context of structure-function organization of photosynthetic apparatus in plants. A basic focus of the article is concentrated on a bifurcated oxidation of plastoquinol by the cytochrome b6f complex, which represents the rate-limiting step of electron transfer between photosystems 2 and 1. Electron transport along the chains of the noncyclic, cyclic and pseudocyclic electron flow, their relationships to generation of the trans-thylakoid difference in electrochemical potentials of protons in chloroplasts, and the pH-dependent mechanisms of regulation of the cytochrome b6f complex, are considered. Redox reactions with the participation of molecular oxygen and ascorbate, the alternative mediators of electron transport in chloroplasts, have also been discussed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Clarke, Joanne E., und Giles N. Johnson. „In vivo temperature dependence of cyclic and pseudocyclic electron transport in barley“. Planta 212, Nr. 5-6 (12.04.2001): 808–16. http://dx.doi.org/10.1007/s004250000432.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Furbank, RT, CLD Jenkins und MD Hatch. „C4 Photosynthesis: Quantum Requirement, C4 and Overcycling and Q-Cycle Involvement“. Functional Plant Biology 17, Nr. 1 (1990): 1. http://dx.doi.org/10.1071/pp9900001.

Der volle Inhalt der Quelle
Annotation:
The relationship between overcycling of the C4 acid cycle in C4 photosynthesis (due to CO2 leakage) and the quantum yield of photosynthesis is considered. From a comparison of theoretical and measured quantum yields we suggest that the high efficiency of light utilisation by most C4 plants can only be explained by the mandatory involvement of both the Q-cycle and cyclic or pseudocyclic electron transport in the proton partitioning process. The existence of the Q-cycle mechanism may have been a prerequisite for the evolution of the C4 pathway.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Tokarz, Krzysztof M., Wojciech Makowski, Barbara Tokarz, Monika Hanula, Ewa Sitek, Ewa Muszyńska, Roman Jędrzejczyk, Rafał Banasiuk, Łukasz Chajec und Stanisław Mazur. „Can Ceylon Leadwort (Plumbago zeylanica L.) Acclimate to Lead Toxicity?—Studies of Photosynthetic Apparatus Efficiency“. International Journal of Molecular Sciences 21, Nr. 5 (09.03.2020): 1866. http://dx.doi.org/10.3390/ijms21051866.

Der volle Inhalt der Quelle
Annotation:
Ceylon leadwort (Plumbago zeylanica) is ornamental plant known for its pharmacological properties arising from the abundant production of various secondary metabolites. It often grows in lead polluted areas. The aim of presented study was to evaluate the survival strategy of P. zeylanica to lead toxicity via photosynthetic apparatus acclimatization. Shoots of P. zeylanica were cultivated on media with different Pb concentrations (0.0, 0.05, and 0.1 g Pb∙l−1). After a four-week culture, the efficiency of the photosynthetic apparatus of plants was evaluated by Chl a fluorescence measurement, photosynthetic pigment, and Lhcb1, PsbA, PsbO, and RuBisCo protein accumulation, antioxidant enzymes activity, and chloroplast ultrastructure observation. Plants from lower Pb concentration revealed no changes in photosynthetic pigments content and light-harvesting complex (LHCII) size, as well as no limitation on the donor side of Photosystem II Reaction Centre (PSII RC). However, the activity and content of antioxidant enzymes indicated a high risk of limitation on the acceptor side of Photosystem I. In turn, plants from 0.1 g Pb∙l−1 showed a significant decrease in pigments content, LHCII size, the amount of active PSII RC, oxygen-evolving complex activity, and significant remodeling of chloroplast ultrastructure indicated limitation of PSII RC donor side. Obtained results indicate that P. zeylanica plants acclimate to lead toxicity by Pb accumulation in roots and, depending on Pb concentration, by adjusting their photosynthetic apparatus via the activation of alternative (cyclic and pseudocyclic) electron transport pathways.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Burlacot, Adrien. „Quantifying the roles of algal photosynthetic electron pathways: a milestone towards photosynthetic robustness“. New Phytologist, 23.10.2023. http://dx.doi.org/10.1111/nph.19328.

Der volle Inhalt der Quelle
Annotation:
SummaryDuring photosynthesis, electron transport reactions generate and shuttle reductant to allow CO2 reduction by the Calvin–Benson–Bassham cycle and the formation of biomass building block in the so‐called linear electron flow (LEF). However, in nature, environmental parameters like light intensity or CO2 availability can vary and quickly change photosynthesis rates, creating an imbalance between photosynthetic energy production and metabolic needs. In addition to LEF, alternative photosynthetic electron flows are central to allow photosynthetic energy to match metabolic demand in response to environmental variations. Microalgae arguably harbour one of the most diverse set of alternative electron flows (AEFs), including cyclic (CEF), pseudocyclic (PCEF) and chloroplast‐to‐mitochondria (CMEF) electron flow. While CEF, PCEF and CMEF have large functional overlaps, they differ in the conditions they are active and in their role for photosynthetic energy balance. Here, I review the molecular mechanisms of CEF, PCEF and CMEF in microalgae. I further propose a quantitative framework to compare their key physiological roles and quantify how the photosynthetic energy is partitioned to maintain a balanced energetic status of the cell. Key differences in AEF within the green lineage and the potential of rewiring photosynthetic electrons to enhance plant robustness will be discussed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

„Effect of methyl viologen on slow secondary fluorescence kinetics associated with photosynthetic carbon assimilation in intact isolated chloroplasts“. Proceedings of the Royal Society of London. Series B. Biological Sciences 226, Nr. 1243 (22.11.1985): 237–47. http://dx.doi.org/10.1098/rspb.1985.0093.

Der volle Inhalt der Quelle
Annotation:
Methyl viologen in catalytic amounts induces pronounced secondary kinetics in fluorescence in intact isolated chloroplasts performing photosynthetic carbon assimilation. These transient increases in fluorescence and oscillations were associated with the induction phase of O 2 evolution in a similar manner to the transient ‘shoulder’ detected previously (Z. G. Cerović, M. N. Sivak and D. A. Walker, Proc . R . Soc . Lond . B 220, 327–338 (1984)). Experiments with the addition of antimycin A and gramicidin D demonstrated that methyl viologen induced an increased ATP production linked to pseudocyclic electron transport. The adjustment of ATP and NADPH production to meet the requirements of the reductive pentose phosphate pathway during induction is thought to be the cause of the detected transients and oscillations in fluorescence.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Pseudocyclic electron transport"

1

Hani, Umama. „Regulation of cyclic and pseudocyclic electron transport“. Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASB044.

Der volle Inhalt der Quelle
Annotation:
La photosynthèse, principale voie de production d'énergie dans les environnements naturels, repose sur des flux d'électrons intervenant dans plusieurs complexes dans la membrane des thylakoïdes des organismes photosynthétiques. Le flux principal est le transport « linéaire » des électrons qui implique leur transfert de l'eau au NADP⁺, le tout couplé à la synthèse d'ATP. L'oxydation de l'eau photosynthétique est catalysée par les clusters de manganèse (Mn₄CaO₅) au niveau du photosystème II (PSII). Pour assurer un équilibre optimal entre la quantité d'énergie produite et consommée, les organismes photosynthétiques détournent une partie de l'énergie lumineuse récoltée des voies de transport d'électrons "linéaires" vers des voies "alternatives". Parmi ces voies, on trouve les transports cyclique et pseudocyclique des électrons autour du photosystème I (PSI), qui fournit de l'ATP supplémentaire pour répondre aux besoins métaboliques. En outre, des systèmes redox spécialisés appelés "thiorédoxines" sont responsables du maintien de l'état redox et de l'acclimatation rapide des plantes à un environnement changeant. Dans le cas contraire, cela peut conduire à des niveaux toxiques d'espèces réactives de l'oxygène (ROS) dans les cellules. Nous avons étudié les effets de l'excès et de la carence en manganèse (Mn) sur le transport des électrons au cours de la photosynthèse chez l'hépatique Marchantia polymorpha. Nous avons montré que l'homéostasie du Mn a un effet sur le métabolisme mais aussi sur la photosynthèse. De plus, nous avons étudié les changements redox in vivo du P700 et du la plastocyanine (PC) en utilisant le spectrophotomètre KLAS-NIR. Il semble que la carence en Mn permet une augmentation du transport cyclique des électrons (TCE) ce qui indique la présence de supercomplexes contenant le PSI et le complexe du cytochrome b6f. Dans un second temps, nous nous sommes concentrées sur la régulation redox de la réduction de l'oxygène (transport d'électrons pseudocyclique) du côté de l'accepteur du PSI. En utilisant la spectroscopie RPE par piégeage indirect de spin, nous avons montré que des plantes sauvages d'Arabidopsis thaliana génèrent plus de ROS en photopériode de jour court (JC) qu'en photopériode de jour long (JL). En outre, nous avons mis en évidence le rôle de plusieurs acteurs, y compris les thiorédoxines et plusieurs protéines du lumen et du stroma dans la régulation redox. De plus, j'ai découvert que le transfert du pouvoir réducteur du stroma au lumen est médié par une protéine appelée CCDA. Par ailleurs, l'attachement réversible de Trxm à la membrane des thylakoïdes agit comme une force motrice pour l’accumulation des ROS en JC. Dans l'ensemble, les résultats établissent un lien étroit entre le transport cyclique et pseudocyclique des électrons en termes de régulations redox médiées par les thiorédoxines. Une voie est également ouverte quant à une exploration plus approfondie du TCE dans différentes conditions de stress
Photosynthesis acts as the main gateway for energy production in natural environments and relies on the electron flow via several complexes in the thylakoid membrane of photosynthetic organisms. The major flux is “linear” electron transport, which involves the transfer of electrons from water to NADP⁺, coupled with the ATP synthesis. Photosynthetic water oxidation is catalyzed by manganese cluster (Mn₄CaO₅) at photosystem II (PSII). To ensure an optimal balance between the amount of energy produced and consumed, photosynthetic organisms divert part of the harvested light energy from “linear” to “alternative” electron transport pathways. Among those pathways are cyclic and pseudocyclic electron transport around Photosystem I (PSI), which supplies extra ATP to meet metabolic demands. Moreover, specialized redox systems, called " thioredoxins " are responsible for maintaining the redox status and fast acclimation of plants to constantly fluctuating environments, which could otherwise lead to toxic levels of reactive oxygen species (ROS) production. We studied the effects of manganese (Mn) excess and deficiency on photosynthetic electron transport in the liverwort Marchantia polymorpha. We have shown that Mn homeostasis has an effect at both metabolic and photosynthetic levels. Moreover, we have studied the in vivo redox changes of P700 and PC using KLAS-NIR spectrophotometer and have shown that Mn deficiency seems to enhance cyclic electron transport (CET), that may indicate the presence of supercomplexes containing PSI and cytochrome b6f complex. The second part of this PhD focused on the redox regulation of oxygen reduction (pseudocyclic electron transport) at the PSI acceptor side. By using indirect spin trapping EPR spectroscopy, we have shown that Arabidopsis thaliana wild type plants generate more ROS in short day (SD) photoperiod than in long day (LD) photoperiod. Further, the current study highlighted the role of several players in redox regulation; including thioredoxins and several other lumenal and stromal proteins. Moreover, I explored that the transfer of reducing powers from stroma to lumen is mediated by a protein called CCDA and that reversible attachment of Trxm to the thylakoid membrane acts as the driving force for higher ROS under the SD light regime. Overall, this research establishes a strong connection between cyclic and pseudocyclic electron transport in terms of thioredoxins mediated redox regulations and also paves the way to further explore CET under different stress conditions
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Pseudocyclic electron transport"

1

Kruk, J., und M. Jemioła-Rzemińska. „Plastoquinol and Other Natural Membrane Prenyllipids May Form Pseudocyclic Electron Transport by Scavenging Superoxide Generated in Photosystem I“. In Advanced Research on Plant Lipids, 365–68. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0159-4_85.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie