Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Pseudocyclic electron transport“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Pseudocyclic electron transport" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Pseudocyclic electron transport"
Goetze, D. Christoper, und Robert Carpentier. „Ferredoxin–NADP+ reductase is the site of oxygen reduction in pseudocyclic electron transport“. Canadian Journal of Botany 72, Nr. 2 (01.02.1994): 256–60. http://dx.doi.org/10.1139/b94-034.
Der volle Inhalt der QuelleTikhonov, A. N. „Electron transport in chloroplasts: regulation and alternative pathways of electron transfer“. Биохимия 88, Nr. 10 (15.12.2023): 1742–60. http://dx.doi.org/10.31857/s0320972523100032.
Der volle Inhalt der QuelleClarke, Joanne E., und Giles N. Johnson. „In vivo temperature dependence of cyclic and pseudocyclic electron transport in barley“. Planta 212, Nr. 5-6 (12.04.2001): 808–16. http://dx.doi.org/10.1007/s004250000432.
Der volle Inhalt der QuelleFurbank, RT, CLD Jenkins und MD Hatch. „C4 Photosynthesis: Quantum Requirement, C4 and Overcycling and Q-Cycle Involvement“. Functional Plant Biology 17, Nr. 1 (1990): 1. http://dx.doi.org/10.1071/pp9900001.
Der volle Inhalt der QuelleTokarz, Krzysztof M., Wojciech Makowski, Barbara Tokarz, Monika Hanula, Ewa Sitek, Ewa Muszyńska, Roman Jędrzejczyk, Rafał Banasiuk, Łukasz Chajec und Stanisław Mazur. „Can Ceylon Leadwort (Plumbago zeylanica L.) Acclimate to Lead Toxicity?—Studies of Photosynthetic Apparatus Efficiency“. International Journal of Molecular Sciences 21, Nr. 5 (09.03.2020): 1866. http://dx.doi.org/10.3390/ijms21051866.
Der volle Inhalt der QuelleBurlacot, Adrien. „Quantifying the roles of algal photosynthetic electron pathways: a milestone towards photosynthetic robustness“. New Phytologist, 23.10.2023. http://dx.doi.org/10.1111/nph.19328.
Der volle Inhalt der Quelle„Effect of methyl viologen on slow secondary fluorescence kinetics associated with photosynthetic carbon assimilation in intact isolated chloroplasts“. Proceedings of the Royal Society of London. Series B. Biological Sciences 226, Nr. 1243 (22.11.1985): 237–47. http://dx.doi.org/10.1098/rspb.1985.0093.
Der volle Inhalt der QuelleDissertationen zum Thema "Pseudocyclic electron transport"
Hani, Umama. „Regulation of cyclic and pseudocyclic electron transport“. Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASB044.
Der volle Inhalt der QuellePhotosynthesis acts as the main gateway for energy production in natural environments and relies on the electron flow via several complexes in the thylakoid membrane of photosynthetic organisms. The major flux is “linear” electron transport, which involves the transfer of electrons from water to NADP⁺, coupled with the ATP synthesis. Photosynthetic water oxidation is catalyzed by manganese cluster (Mn₄CaO₅) at photosystem II (PSII). To ensure an optimal balance between the amount of energy produced and consumed, photosynthetic organisms divert part of the harvested light energy from “linear” to “alternative” electron transport pathways. Among those pathways are cyclic and pseudocyclic electron transport around Photosystem I (PSI), which supplies extra ATP to meet metabolic demands. Moreover, specialized redox systems, called " thioredoxins " are responsible for maintaining the redox status and fast acclimation of plants to constantly fluctuating environments, which could otherwise lead to toxic levels of reactive oxygen species (ROS) production. We studied the effects of manganese (Mn) excess and deficiency on photosynthetic electron transport in the liverwort Marchantia polymorpha. We have shown that Mn homeostasis has an effect at both metabolic and photosynthetic levels. Moreover, we have studied the in vivo redox changes of P700 and PC using KLAS-NIR spectrophotometer and have shown that Mn deficiency seems to enhance cyclic electron transport (CET), that may indicate the presence of supercomplexes containing PSI and cytochrome b6f complex. The second part of this PhD focused on the redox regulation of oxygen reduction (pseudocyclic electron transport) at the PSI acceptor side. By using indirect spin trapping EPR spectroscopy, we have shown that Arabidopsis thaliana wild type plants generate more ROS in short day (SD) photoperiod than in long day (LD) photoperiod. Further, the current study highlighted the role of several players in redox regulation; including thioredoxins and several other lumenal and stromal proteins. Moreover, I explored that the transfer of reducing powers from stroma to lumen is mediated by a protein called CCDA and that reversible attachment of Trxm to the thylakoid membrane acts as the driving force for higher ROS under the SD light regime. Overall, this research establishes a strong connection between cyclic and pseudocyclic electron transport in terms of thioredoxins mediated redox regulations and also paves the way to further explore CET under different stress conditions
Buchteile zum Thema "Pseudocyclic electron transport"
Kruk, J., und M. Jemioła-Rzemińska. „Plastoquinol and Other Natural Membrane Prenyllipids May Form Pseudocyclic Electron Transport by Scavenging Superoxide Generated in Photosystem I“. In Advanced Research on Plant Lipids, 365–68. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0159-4_85.
Der volle Inhalt der Quelle