Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Proton therap“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Proton therap" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Proton therap"
Pryanichnikov, A. A., P. B. Zhogolev, A. E. Shemyakov, M. A. Belikhin, A. P. Chernyaev und V. Rykalin. „Low Intensity Beam Extraction Mode on the Protom Synchrotron for Proton Radiography Implementation“. Journal of Physics: Conference Series 2058, Nr. 1 (01.10.2021): 012041. http://dx.doi.org/10.1088/1742-6596/2058/1/012041.
Der volle Inhalt der QuelleBussière, Marc R., und Judith A. Adams. „Treatment Planning for Conformal Proton Radiation Therapy“. Technology in Cancer Research & Treatment 2, Nr. 5 (Oktober 2003): 389–99. http://dx.doi.org/10.1177/153303460300200504.
Der volle Inhalt der QuelleRaldow, Ann, James Lamb und Theodore Hong. „Proton beam therapy for tumors of the upper abdomen“. British Journal of Radiology 93, Nr. 1107 (März 2020): 20190226. http://dx.doi.org/10.1259/bjr.20190226.
Der volle Inhalt der QuelleFoocharoen, C., P. Kingkaew, Y. Teerawattananon, A. Mahakkanukrauh, S. Suwannaroj, W. Manasirisuk, J. Chaiyarit und A. Sangchan. „AB0923 COST-EFFECTIVENESS OF ALGINIC ACID IN COMBINATION WITH PROTON PUMP INHIBITOR FOR THE TREATMENT OF GASTROESOPHAGEAL REFLUX DISEASE IN SYSTEMIC SCLEROSIS PATIENTS“. Annals of the Rheumatic Diseases 82, Suppl 1 (30.05.2023): 1678.1–1678. http://dx.doi.org/10.1136/annrheumdis-2023-eular.495.
Der volle Inhalt der QuellePatyal, Baldev. „Dosimetry Aspects of Proton Therapy“. Technology in Cancer Research & Treatment 6, Nr. 4_suppl (August 2007): 17–23. http://dx.doi.org/10.1177/15330346070060s403.
Der volle Inhalt der QuelleGiovannini, Daniela, Cinzia De Angelis, Maria Denise Astorino, Emiliano Fratini, Evaristo Cisbani, Giulia Bazzano, Alessandro Ampollini et al. „In Vivo Radiobiological Investigations with the TOP-IMPLART Proton Beam on a Medulloblastoma Mouse Model“. International Journal of Molecular Sciences 24, Nr. 9 (05.05.2023): 8281. http://dx.doi.org/10.3390/ijms24098281.
Der volle Inhalt der QuelleKatsoulakis, Evangelia, Natalya Chernichenko und David Schreiber. „Proton Therapy in the Treatment of Head and Neck Cancer“. International Journal of Head and Neck Surgery 8, Nr. 2 (2017): 45–48. http://dx.doi.org/10.5005/jp-journals-10001-1305.
Der volle Inhalt der QuellePullia, Marco G. „Synchrotrons for Hadrontherapy“. Reviews of Accelerator Science and Technology 02, Nr. 01 (Januar 2009): 157–78. http://dx.doi.org/10.1142/s1793626809000284.
Der volle Inhalt der QuelleRohollahpour, Elham, und Hadi Taleshi Ahangari. „Feasibility of Proton Range Estimation with Prompt Gamma Imaging in Proton Therapy of Lung Cancer: Monte Carlo Study“. Journal of Medical Physics 49, Nr. 4 (Oktober 2024): 531–38. https://doi.org/10.4103/jmp.jmp_74_24.
Der volle Inhalt der QuelleMa, Jie, Hao Shen und Zhaohong Mi. „Enhancing Proton Therapy Efficacy Through Nanoparticle-Mediated Radiosensitization“. Cells 13, Nr. 22 (07.11.2024): 1841. http://dx.doi.org/10.3390/cells13221841.
Der volle Inhalt der QuelleDissertationen zum Thema "Proton therap"
JAFER, RASHIDA. „Laser plasma protons and applications in cancer therapy and proton radiography“. Doctoral thesis, Università degli Studi di Milano-Bicocca, 2009. http://hdl.handle.net/10281/7457.
Der volle Inhalt der QuelleBattinelli, Cecilia. „Proton Arc Therapy Optimization“. Thesis, KTH, Optimeringslära och systemteori, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-253362.
Der volle Inhalt der QuelleCancer tillhör de främsta dödsorsakerna i världen. Under de senaste decennierna har utvecklingen av avancerad mjukvara haft en ökad betydelse för cancerbehandlingsplanering. Idag används flera metoder för att behandla cancer. Till dem hör strålterapi. Inom strålterapi är matematisk optimering av stråldosen en central komponent i den mjukvara som används för att ta fram behandlingsplaner. Detta examensarbete fokuserar på denna optimering specifikt inom protonterapi och syftar till att utveckla nya metoder för att generera avancerade behandlingar med en ny form av strålteknik. I konventionell protonterapi så strålas patienten från ett fåtal bestämda riktningar, vanligen två eller tre. Från varje riktning skjuts en protonstråle, vars energi moduleras för att kontrollera vid vilket djup protonerna levererar sin energi. Detta arbete behandlar en alternativ teknik som kallas protonbågsterapi, där den centrala idén är att stråla patienten från betydligt fler riktningar, men med färre energier från varje riktning. Denna teknik möjliggör förbättringar av behandlingens utfall liksom dess hastighet. Antalet protonenergier som används måste dock begränsas, eftersom ändringar av energin står för den primära tidsåtgången i behandlingen och det är önskvärt att stråla patienten under så kort tid som möjligt. Därmed är den centrala uppgiften i protonbågsterapi att bestämma vilka och hur många energier som ska användas från varje möjlig strålvinkel. Syftet med detta arbete är att ta fram metoder som presterar bättre än de befintliga för att lösa denna uppgift på ett optimalt sätt. När en strålbehandling modelleras som ett optimeringsproblem så är målfunktionen ett kvantitativt evalueringsmått baserat på den levererade dosfördelningen i patienten. I detta arbete utvidgas den konventionella problemformuleringen till att även involvera ett bivillkor avseende antalet energier som används i behandlingen. Problemet löses sedan med olika algoritmer och heuristiska metoder. Metoderna utvärderas genom att generera behandlingar i tre olika patientfall, samtliga med bukspottkörtelcancer. Tre krit erier utvärderas: målfunktionsvärde, behandlingstid samt dosens biologiska effekt. De utvecklade metoderna producerar samtliga behandlingar bättre än den som ges med konventionell protonterapi, med avseende på alla tre utvärderingskriterier. Således dras slutsatsen att protonbågsterapi kan vara en förbättring av konventionell protonterapi. Den föreslagna metoden för att välja energier är en hybridmetod bestående av en girig och en omvänt girig optimeringsmetod. Framtida arbete bör fokusera på att inkludera den biologiska effekten av dosen i optimeringsmodellen, och även att ta hänsyn till maskinspecifika begränsningar.
Aloufi, K. M. H. „Neutron spectroscopy in proton therapy“. Thesis, University College London (University of London), 2016. http://discovery.ucl.ac.uk/1493068/.
Der volle Inhalt der QuelleRyckman, Jeffrey M. „Using MCNPX to calculate primary and secondary dose in proton therapy“. Thesis, Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/39499.
Der volle Inhalt der QuelleSchneider, Uwe. „Proton radiography : a tool for quality control in proton therapy /“. [S.l.] : [s.n.], 1994. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=10780.
Der volle Inhalt der QuelleMorel, Paul. „MSPT : Motion Simulator for Proton Therapy“. Thesis, Paris Est, 2014. http://www.theses.fr/2014PEST1094/document.
Der volle Inhalt der QuelleIn proton therapy, the delivery method named spot scanning, can provide a particularly efficient treatment in terms of tumor coverage and healthy tissues protection. The dosimetric benefits of proton therapy may be greatly degraded due to intra-fraction motions. Hence, the study of mitigation or adaptive methods is necessary. For this purpose, we developed an open-source 4D dose computation and evaluation software, MSPT (Motion Simulator for Proton Therapy), for the spot-scanning delivery technique. It aims at highlighting the impact of intra-fraction motions during a treatment delivery by computing the dose distribution in the moving patient. In addition, the use of MSPT allowed us to develop and propose a new motion mitigation strategy based on the adjustment of the beam's weight when the proton beam is scanning across the tumor. In photon therapy, a main concern for deliveries using a multileaf collimator (MLC) relies on finding a series of MLC configurations to deliver properly the treatment. The efficiency of such series is measured by the total beam-on time and the total setup time. In our work, we study the minimization of these efficiency criteria from an algorithmic point of view, for new variants of MLCs: the rotating MLC and the dual-layer MLC. In addition, we propose an approximation algorithm to find a series of configurations that minimizes the total beam-on time for the rotating MLC
Salhani, Maat Bilhal. „Backprojection-then-filtering reconstruction along the most likely path in proton computed tomography“. Thesis, KTH, Skolan för teknik och hälsa (STH), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-189495.
Der volle Inhalt der QuelleHenry, Thomas. „The development of a proton grid therapy“. Licentiate thesis, Stockholms universitet, Fysikum, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-144098.
Der volle Inhalt der QuelleSmeets, Julien. „Prompt gamma imaging with a slit camera for real time range control in particle therapy“. Doctoral thesis, Universite Libre de Bruxelles, 2012. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209624.
Der volle Inhalt der QuelleThis thesis reports on the feasibility, development and test of a new type of prompt gamma camera for proton therapy. This concept uses a knife-edge slit collimator to obtain a 1-dimensional projection of the beam path on a gamma camera. It was optimized, using the Monte Carlo code MCNPX version 2.5.0, to select high energy photons correlated with the beam range and detect them with both high counting statistics and sufficient spatial resolution for use in clinical routine. To validate the Monte Carlo model, spectrometry measurements of secondary particles emitted by a PMMA target during proton irradiation at 160 MeV were realised. An excellent agreement with the simulations was observed when using subtraction methods to isolate the gammas in direct incidence. A first prototype slit camera using the HiCam gamma detector was consequently prepared and tested successfully at 100 and 160 MeV beam energies. If we neglect electronic dead times and rejection of detected events, the current solution with its collimator at 15 cm from beam axis can achieve a 1-2 mm standard deviation on range estimation in a homogeneous PMMA target for numbers of protons that correspond to doses in water at Bragg peak as low as 15 cGy at 100 MeV and 25 cGy at 160 MeV assuming pencil beams with a Gaussian profile of 5 mm sigma at target entrance.
This thesis also investigates the applicability of the slit camera for carbon ion therapy. On the basis of Monte Carlo simulations with the code MCNPX version 2.7.E, this type of camera appears not to be able to identify the beam range with the required sensitivity. The feasibility of prompt gamma imaging itself seems questionable at high beam energies given the weak correlation of secondaries leaving the patient.
This work consequently concludes to the relevance of the slit camera approach for real time range monitoring in proton therapy, but not in carbon ion therapy.
Doctorat en Sciences de l'ingénieur
info:eu-repo/semantics/nonPublished
Vanaudenhove, Thibault. „Shielding study against high-energy neutrons produced in a proton therapy facility by means of Monte Carlo codes and on-site measurements“. Doctoral thesis, Universite Libre de Bruxelles, 2014. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209276.
Der volle Inhalt der QuelleAs a consequence, thick concrete shielding walls are placed around the treatment room to ensure that other people and workers received a dose as small as possible. The dose measurement is performed with specific dosemeters such as the WENDI-II, which gives a conservative estimation of the ambient dose equivalent up to 5 GeV. The dose in working areas may also be estimated by means of numerical calculations by using simulation codes of particle transport such as the GEANT4, MCNPX, FLUKA and PHITS Monte Carlo codes.
Secondary particle yields calculated with Monte Carlo codes show discrepancies when different physical models are used but are globally in good agreement with experimental data from the literature. Neutron and photon doses decrease exponentially through concrete shielding wall but the neutron dose is definitely the main component behind a wall with sufficient thickness. Shielding parameters, e.g. attenuation coefficients, vary as functions of emission angle (regarding the incident beam direction), incident proton energy, and target material and composition.
The WENDI-II response functions computed by using different hadronic models show also some discrepancies. Thermal treatment of hydrogen in the polyethylene composing the detector is also of great importance to calculate the correct response function and the detector sensitivity.
Secondary particle sources in a proton therapy facility are essentially due to losses in cyclotron and beam interactions inside the energy selection system, with the treatment nozzle components and the target - patient or phantom. Numerical and experimental results of the dose in mazes show a good agreement for the most of detection points while they show large discrepancies in control rooms. Indeed, statistical consistency is reached with difficulty for both experimental and calculated results in control rooms since concrete walls are very thick in this case.
/
La radiothérapie utilisant des faisceaux de protons d’énergie entre 50 MeV et 250 MeV s’est largement développée ces dernières années. Elle a l’immense avantage de pouvoir concentrer la dose due au faisceau incident de manière très efficace et très précise sur la tumeur, en épargnant les éventuels organes sains et sensibles aux radiations situés aux alentours. Cependant, des rayonnements « secondaires » très énergétiques sont créés par les réactions nucléaires subies par les protons lors de leur parcours dans les tissus, et peuvent sortir du patient. Des blindages entourant la salle de traitement et suffisamment épais doivent être présents afin que la dose reçue par les personnes se trouvant aux alentours soit la plus faible possible. La mesure de la dose se fait avec des dosimètres spécifiques et sensibles aux rayonnements de haute énergie, tels que le WENDI-II pour les neutrons. L’estimation de cette dose, et donc la modélisation des blindages, se fait également avec des codes de simulation numérique de transport de particules par les méthodes de Monte Carlo, tels que GEANT4, MCNPX, FLUKA et PHITS.
La production de rayonnements secondaires calculée à l’aide de codes Monte Carlo montre des écarts significatifs lorsque différents modèles d’interactions physiques sont utilisés, mais est en bon accord avec des données expérimentales de référence. L’atténuation de la dose due aux neutrons et aux photons secondaires à travers un blindage composé de béton est exponentielle. De plus, la dose due aux neutrons est clairement la composante dominante au-delà d’une certaine épaisseur. Les paramètres d’atténuation, comme par exemple le coefficient d’atténuation, dépendent de l’angle d’émission (par rapport à la direction du faisceau incident), de l’énergie des protons incidents et de la nature et la composition de la cible.
La fonction de réponse du dosimètre WENDI-II montre également des variations lorsque différents modèles physiques sont considérés dans les codes Monte Carlo. La prise en compte d’effets fins comme les états de vibration et de rotation des atomes d’hydrogène au sein du polyéthylène composant le détecteur se révèle essentielle afin de caractériser correctement la réponse du détecteur ainsi que sa sensibilité.
L’émission secondaire dans un centre de protonthérapie est essentiellement due aux pertes dans le cyclotron et aux interactions du faisceau avec les systèmes de sélection de l’énergie, les composants de la tête de tir et le patient (ou le fantôme). L’évaluation numérique de la dose dans les labyrinthes des différentes salles du centre montre un bon accord avec les données expérimentales. Tandis que pour les points de mesure dans leur salle de contrôle respective, de larges différences peuvent apparaitre. Ceci est en partie dû à la difficulté d’obtenir des résultats statistiquement recevables du point de vue expérimental, mais aussi numérique, au vu de l’épaisseur des blindages entourant les salles de contrôle.
Doctorat en Sciences de l'ingénieur
info:eu-repo/semantics/nonPublished
Bücher zum Thema "Proton therap"
Metz, James M. Proton therapy. New York: Demos Medical Pub., 2010.
Den vollen Inhalt der Quelle findenYajnik, Santosh. Proton Beam Therapy. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-5298-0.
Der volle Inhalt der QuellePaganetti, Ph.D., Harald. Proton Therapy Physics. 3. Aufl. Boca Raton: CRC Press, 2025. https://doi.org/10.1201/9781032616858.
Der volle Inhalt der QuelleBreuer, Hans, und Berend J. Smit. Proton Therapy and Radiosurgery. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04301-1.
Der volle Inhalt der QuelleF, De Laney Thomas, und Kooy Hanne M, Hrsg. Proton and charged particle radiotherapy. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins, 2008.
Den vollen Inhalt der Quelle findenF, De Laney Thomas, und Kooy Hanne M, Hrsg. Proton and charged particle radiotherapy. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins, 2008.
Den vollen Inhalt der Quelle findenWürl, Matthias. Towards Offline PET Monitoring at a Cyclotron-Based Proton Therapy Facility. Wiesbaden: Springer Fachmedien Wiesbaden, 2016. http://dx.doi.org/10.1007/978-3-658-13168-5.
Der volle Inhalt der QuelleAntonio Carlos Alves de Aro. Microdosimetry relevant to neutron and proton cancer therapy up to 62 MeV. Birmingham: University of Birmingham, 1992.
Den vollen Inhalt der Quelle findenCosgrove, Vivian Patrick. Monte Carlo modelling and microdosimetric measurements relating to proton cancer therapy of the eye. Birmingham: University of Birmingham, 1994.
Den vollen Inhalt der Quelle findenMatthews, David J. Targeting protein kinases for cancer therapy. Hoboken, N.J: John Wiley & Sons, 2009.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Proton therap"
Dirican, Bahar. „Proton Therapy: Present State and Future Prospects“. In The Latest Innovative Approaches in Radiation Therapy, 63–79. Istanbul: Nobel Tip Kitabevleri, 2024. http://dx.doi.org/10.69860/nobel.9786053359425.4.
Der volle Inhalt der QuelleMallick, Supriya. „Proton Therapy“. In Practical Radiation Oncology, 79–84. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0073-2_12.
Der volle Inhalt der QuelleDaugherty, Larry C., Brandon J. Fisher, Christin A. Knowlton, Michelle Kolton Mackay, David E. Wazer, Anthony E. Dragun, James H. Brashears et al. „Proton Therapy“. In Encyclopedia of Radiation Oncology, 675–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-540-85516-3_28.
Der volle Inhalt der QuelleOelfke, Uwe. „Proton Therapy“. In NATO Science for Peace and Security Series B: Physics and Biophysics, 173–81. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-3097-9_15.
Der volle Inhalt der QuelleChang, Joe Y., und James D. Cox. „Proton Therapy“. In Lung Cancer, 338–52. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118468791.ch22.
Der volle Inhalt der QuelleBloch, Charles. „Proton Therapy“. In Absolute Therapeutic Medical Physics Review, 53–62. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-14671-8_6.
Der volle Inhalt der QuelleGrassberger, Clemens, Gregory C. Sharp und Harald Paganetti. „Proton therapy“. In Principles and Practice of Image-Guided Radiation Therapy of Lung Cancer, 179–210. Boca Raton : Taylor & Francis, 2017. | Series: Imaging in medical diagnosis and therapy: CRC Press, 2017. http://dx.doi.org/10.1201/9781315143873-10.
Der volle Inhalt der QuelleMendenhall, Nancy Price, und Zuofeng Li. „Proton Therapy“. In Medical Radiology, 197–218. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/174_2011_266.
Der volle Inhalt der QuellePaganetti, Harald. „Proton Therapy“. In Proton Therapy Physics, 3–14. 3. Aufl. Boca Raton: CRC Press, 2025. https://doi.org/10.1201/9781032616858-2.
Der volle Inhalt der QuelleArmstrong, Carol L. „Proton Beam Therapy“. In Encyclopedia of Clinical Neuropsychology, 2060–61. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-0-387-79948-3_151.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Proton therap"
Tabrizi, F. Kazem, A. Asadi, S. A. Hosseini, H. Arabi und H. Zaidi. „Enhancing Precision in Proton Therapy: Monte Carlo Simulation Modeling and Validation of FLASH Proton Therapy for Accelerated Treatment Delivery“. In 2024 IEEE Nuclear Science Symposium (NSS), Medical Imaging Conference (MIC) and Room Temperature Semiconductor Detector Conference (RTSD), 1. IEEE, 2024. http://dx.doi.org/10.1109/nss/mic/rtsd57108.2024.10657642.
Der volle Inhalt der QuelleBalcerzyk, M., M. Freire, R. Fernandez De La Rosa, M. A. Pozo, A. Gonzalez-Montoro, S. Jiménez-Serrano und A. J. Gonzalez. „Dose Verification after Proton Therapy Treatment using Positron Emission Tomography“. In 2024 IEEE Nuclear Science Symposium (NSS), Medical Imaging Conference (MIC) and Room Temperature Semiconductor Detector Conference (RTSD), 1. IEEE, 2024. http://dx.doi.org/10.1109/nss/mic/rtsd57108.2024.10657472.
Der volle Inhalt der QuelleCheng, Chin-Hsien. „Nano-Scale Transport Phenomena and Thermal Effect of the PEMFC Electrolyte“. In ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer. ASMEDC, 2008. http://dx.doi.org/10.1115/mnht2008-52323.
Der volle Inhalt der QuelleFreeman, Matthew S., Michelle Espy, Frank E. Merrill, Dale Tupa, Per E. Magnelind, Fesseha G. Mariam und Carl H. Wilde. „Proton radiography for relativistic proton beam therapy“. In Physics of Medical Imaging, herausgegeben von Guang-Hong Chen, Joseph Y. Lo und Taly Gilat Schmidt. SPIE, 2018. http://dx.doi.org/10.1117/12.2293928.
Der volle Inhalt der QuelleCho, Min Kook, Jungwook Shin, Ho Kyung Kim, Myonggeun Yoon, Dongho Shin, Se Byeong Lee und Sung Yong Park. „Feasibility of proton tomosynthesis system in proton therapy“. In SPIE Medical Imaging. SPIE, 2010. http://dx.doi.org/10.1117/12.844539.
Der volle Inhalt der QuelleSisterson, J. M. „Proton therapy in 1996“. In The fourteenth international conference on the application of accelerators in research and industry. AIP, 1997. http://dx.doi.org/10.1063/1.52694.
Der volle Inhalt der QuelleKuzora, Natalya, Aleksandr Khalikov, Natalya Mamedova und Djan Karlin. „Proton beam therapy complex at 1000 MeV proton beam“. In RAD Conference. RAD Centre, 2021. http://dx.doi.org/10.21175/rad.abstr.book.2021.35.2.
Der volle Inhalt der QuelleEaton, Brandon, Michael R. von Spakovsky, Michael W. Ellis, Douglas J. Nelson, Benoit Olsommer und Nathan Siegel. „One-Dimensional, Transient Model of Heat, Mass, and Charge Transfer in a Proton Exchange Membrane“. In ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/aes-23652.
Der volle Inhalt der QuelleTung-Chang Liu, Chuan Liu, Xi Shao, B. Eliasson, G. Dudnikova, R. Sagdeev und S. Sharma. „Laser-plasma acceleration of mono-energetic protons: Simulations of an energetic proton source for cancer therapy“. In 2009 International Semiconductor Device Research Symposium (ISDRS 2009). IEEE, 2009. http://dx.doi.org/10.1109/isdrs.2009.5378037.
Der volle Inhalt der QuelleCoutrakon, George B. „Proton synchrotrons for cancer therapy“. In The CAARI 2000: Sixteenth international conference on the application of accelerators in research and industry. AIP, 2001. http://dx.doi.org/10.1063/1.1395439.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Proton therap"
Goodnight, J. E. Jr, und J. R. Alonso. Proton Therapy Research and Treatment Center. Office of Scientific and Technical Information (OSTI), Mai 1992. http://dx.doi.org/10.2172/7013819.
Der volle Inhalt der QuelleGoodnight, J. E. Jr, und J. R. Alonso. Proton Therapy Research and Treatment Center. Office of Scientific and Technical Information (OSTI), Mai 1992. http://dx.doi.org/10.2172/10184274.
Der volle Inhalt der QuelleMcDonough, James. Proton Therapy Dose Characterization and Verification. Fort Belvoir, VA: Defense Technical Information Center, Oktober 2011. http://dx.doi.org/10.21236/ada631128.
Der volle Inhalt der QuelleTochner, Zelig, Keith Cengel, Eric Diffenderfer, Derek Dolney, Simon Hastings, Joel Karp, Alexander Lin, Rulon Mayer, Sergei Savin und Jessica Sheehan. Proton Therapy Dose Characterization and Verification. Fort Belvoir, VA: Defense Technical Information Center, Oktober 2013. http://dx.doi.org/10.21236/ada601963.
Der volle Inhalt der QuellePeggs S. Fundamental Limits to Stereotactic Proton Therapy. Office of Scientific and Technical Information (OSTI), November 2003. http://dx.doi.org/10.2172/1061714.
Der volle Inhalt der QuelleLee Y. Y. SOME THOUGHTS ON CONFORMAL PROTON RADIO THERAPY. Office of Scientific and Technical Information (OSTI), Dezember 1994. http://dx.doi.org/10.2172/1151312.
Der volle Inhalt der QuelleAlonso, J. Optimizing proton therapy at the LBL medical accelerator. Office of Scientific and Technical Information (OSTI), März 1992. http://dx.doi.org/10.2172/5228500.
Der volle Inhalt der QuelleTochner, Zelig, Chris Ainsley, Maura Kirk, Derek Dolney, James McDonough und Neha Vapiwala. Development of a Multileaf Collimator for Proton Therapy. Fort Belvoir, VA: Defense Technical Information Center, November 2012. http://dx.doi.org/10.21236/ada601961.
Der volle Inhalt der QuelleTochner, Zelig, Keith Cengel, Eric Diffenderfer, Derek Dolney, Simon Hastings, Joel Karp, Alexander Lin, Rulon Mayer, Sergei Savin und Jessica Sheehan. Development of Technology for Image-Guided Proton Therapy. Fort Belvoir, VA: Defense Technical Information Center, Oktober 2012. http://dx.doi.org/10.21236/ada601964.
Der volle Inhalt der QuelleMcDonough, James, Aaron Aguilar, Keith Cengel, Ann Kennedy, Richard Maughan, James Metz, Zelig Tochner, Arnaud Belard, John O'Connell und Alexander Lin. Development of Technology for Image-Guided Proton Therapy. Fort Belvoir, VA: Defense Technical Information Center, Oktober 2011. http://dx.doi.org/10.21236/ada561091.
Der volle Inhalt der Quelle