Zeitschriftenartikel zum Thema „Proteins“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Proteins.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Proteins" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Boege, F. „Bence Jones-Proteine. Bence Jones Proteins“. LaboratoriumsMedizin 23, Nr. 9 (Januar 1999): 477–82. http://dx.doi.org/10.1515/labm.1999.23.9.477.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Thorp, H. Holden. „Proteins, proteins everywhere“. Science 374, Nr. 6574 (17.12.2021): 1415. http://dx.doi.org/10.1126/science.abn5795.

Der volle Inhalt der Quelle
Annotation:
The first protein structures were determined by x-ray crystallography in 1957 by John C. Kendrew and Max F. Perutz. As a bioinorganic chemist, I was delighted that the structures were myoglobin and hemoglobin, both heme proteins with big, beautiful iron atoms. It must have been an extraordinary experience to stare at a physical model of the structures and see something that had previously only been imagined. Not long afterward, Christian B. Anfinsen Jr. proposed that the structure of a protein was thermodynamically stable. It seemed possible that the three-dimensional structure of a protein could be predicted based on the sequence of its amino acids. This “protein-folding problem,” as it came to be known, baffled scientists until this year, when the papers we’ve deemed the 2021 Breakthrough of the Year were published.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Akhter, Tahmin, S. Kanamaru und F. Arisaka. „2P043 Protein interactions among neck proteins, gp13/gp14, and the connector protein, gp15, of bacteriophage T4“. Seibutsu Butsuri 45, supplement (2005): S130. http://dx.doi.org/10.2142/biophys.45.s130_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Williams, R. J. P. „Synthetic Proteins: Designer proteins“. Current Biology 4, Nr. 10 (Oktober 1994): 942–44. http://dx.doi.org/10.1016/s0960-9822(00)00213-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Töpfer-Petersen, E., D. Čechová, A. Henschen, M. Steinberger, A. E. Friess und A. Zucker. „Cell biology of acrosomal proteins: Zellbiologie akrosomaler Proteine“. Andrologia 22, S1 (27.04.2009): 110–21. http://dx.doi.org/10.1111/j.1439-0272.1990.tb02077.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Coleman, Joseph E. „Zinc Proteins: Enzymes, Storage Proteins, Transcription Factors, and Replication Proteins“. Annual Review of Biochemistry 61, Nr. 1 (Juni 1992): 897–946. http://dx.doi.org/10.1146/annurev.bi.61.070192.004341.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Paape, M., S. Nell, S. von Bargen und J. W. Kellmann. „Identification and characterization of host proteins interacting with NSm, the Tomato spotted wilt virus movement protein“. Plant Protection Science 38, SI 1 - 6th Conf EFPP 2002 (01.01.2002): S108—S111. http://dx.doi.org/10.17221/10331-pps.

Der volle Inhalt der Quelle
Annotation:
To search for host proteins involved in systemic spreading of Tomato spotted wilt virus (TSWV), the virus-encoded NSm movement protein has been utilized as a bait in yeast two-hybrid interaction trap assays. J-domain chaperones from different host species and a protein denominated At-4/1 from Arabidopsis thaliana showing homologies to myosins and kinesins were identified as NSm-interacting partners. In this communication we illustrate that following TSWV infection, J-domain proteins accumulated in systemically infected leaves of A. thaliana, whereas At-4/1 was constitutively detected in leaves of A. thaliana and Nicotiana rustica.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Doolittle, Russell F. „Proteins“. Scientific American 253, Nr. 4 (Oktober 1985): 88–99. http://dx.doi.org/10.1038/scientificamerican1085-88.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Deisenhofer, J. „Proteins“. Current Opinion in Structural Biology 11, Nr. 6 (01.12.2001): 701–2. http://dx.doi.org/10.1016/s0959-440x(01)00273-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Brändén, Carl-Ivar, und Johann Deisenhofer. „Proteins“. Current Opinion in Structural Biology 7, Nr. 6 (Dezember 1997): 819–20. http://dx.doi.org/10.1016/s0959-440x(97)80152-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Sleator, Roy D. „Proteins“. Bioengineered 3, Nr. 2 (März 2012): 80–85. http://dx.doi.org/10.4161/bbug.18303.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Eklund, Hans, und T. Alwyn Jones. „Proteins“. Current Opinion in Structural Biology 5, Nr. 6 (Dezember 1995): 719–20. http://dx.doi.org/10.1016/0959-440x(95)80002-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Stevens, Timothy J., und Isaiah T. Arkin. „Are membrane proteins ?inside-out? proteins?“ Proteins: Structure, Function, and Genetics 36, Nr. 1 (01.07.1999): 135–43. http://dx.doi.org/10.1002/(sici)1097-0134(19990701)36:1<135::aid-prot11>3.0.co;2-i.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Lan, Nan, Hanxing Zhang, Chengcheng Hu, Wenzhao Wang, Ana M. Calvo, Steven D. Harris, She Chen und Shaojie Li. „Coordinated and Distinct Functions of Velvet Proteins in Fusarium verticillioides“. Eukaryotic Cell 13, Nr. 7 (02.05.2014): 909–18. http://dx.doi.org/10.1128/ec.00022-14.

Der volle Inhalt der Quelle
Annotation:
ABSTRACTVelvet-domain-containing proteins are broadly distributed within the fungal kingdom. In the corn pathogenFusarium verticillioides, previous studies showed that the velvet proteinF. verticillioidesVE1 (FvVE1) is critical for morphological development, colony hydrophobicity, toxin production, and pathogenicity. In this study, tandem affinity purification of FvVE1 revealed that FvVE1 can form a complex with the velvet proteinsF. verticillioidesVelB (FvVelB) and FvVelC. Phenotypic characterization of gene knockout mutants showed that, as in the case of FvVE1, FvVelB regulated conidial size, hyphal hydrophobicity, fumonisin production, and oxidant resistance, while FvVelC was dispensable for these biological processes. Comparative transcriptional analysis of eight genes involved in the ROS (reactive oxygen species) removal system revealed that both FvVE1 and FvVelB positively regulated the transcription of a catalase-encoding gene,F. verticillioidesCAT2(FvCAT2). Deletion ofFvCAT2resulted in reduced oxidant resistance, providing further explanation of the regulation of oxidant resistance by velvet proteins in the fungal kingdom.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Jin, Wenzhen, und Syoji T. akada. „1P103 Asymmetry in membrane protein sequence and structure : Glycine outside rule(Membrane proteins,Oral Presentations)“. Seibutsu Butsuri 47, supplement (2007): S49. http://dx.doi.org/10.2142/biophys.47.s49_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

ISOBE, TAKASHI. „Amyloid proteins and amyloidosis.2 Amyloidosis of AA proteins and AL proteins.“ Nihon Naika Gakkai Zasshi 82, Nr. 9 (1993): 1415–19. http://dx.doi.org/10.2169/naika.82.1415.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Jeffery, Constance J. „Moonlighting proteins: old proteins learning new tricks“. Trends in Genetics 19, Nr. 8 (August 2003): 415–17. http://dx.doi.org/10.1016/s0168-9525(03)00167-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Smith, Valerie J., und Elisabeth A. Dyrynda. „Antimicrobial proteins: From old proteins, new tricks“. Molecular Immunology 68, Nr. 2 (Dezember 2015): 383–98. http://dx.doi.org/10.1016/j.molimm.2015.08.009.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

TSUGITA, AKIRA. „Ultramicroanalysis of proteins. 1. Purification of proteins.“ Kagaku To Seibutsu 26, Nr. 5 (1988): 330–37. http://dx.doi.org/10.1271/kagakutoseibutsu1962.26.330.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Serdyuk, I. N. „Structured proteins and proteins with intrinsic disorder“. Molecular Biology 41, Nr. 2 (April 2007): 262–77. http://dx.doi.org/10.1134/s0026893307020082.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Xu, Shengnan, und Hai-Yu Hu. „Fluorogen-activating proteins: beyond classical fluorescent proteins“. Acta Pharmaceutica Sinica B 8, Nr. 3 (Mai 2018): 339–48. http://dx.doi.org/10.1016/j.apsb.2018.02.001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Марьянович, Александр Тимурович, und Дмитрий Юрьевич Кормилец. „SARS CoV-2 PROTEINS AND HUMAN PROTEINS“. Russian Biomedical Research 9, Nr. 1 (22.05.2024): 48–58. http://dx.doi.org/10.56871/rbr.2024.11.95.006.

Der volle Inhalt der Quelle
Annotation:
Белки SARS CoV-2 представляют собой молекулы с массой от нескольких десятков до нескольких тысяч аминокислотных остатков. Существуют структурные и неструктурные белки. К первым относятся шиповый гликопротеин, или S-белок (S), малый мембранный оболочечный белок (E), мембранный белок (M) и нуклеопротеин или нуклеокапсид (N). Вторая группа состоит из 16 неструктурных белков (Nsp1-16, включая полипротеины репликазы RPP 1a и 1ab) и 10 вспомогательных факторов или белков открытой рамки считывания (ORF3a, 3b, 6, 7a, 7b, 8, 9b, 9c, 10 и 14). Белки S, E и M, расположенные снаружи и в мембране вириона, участвуют в контакте вириона с клеткой и проникновении в нее. Другие белки участвуют в захвате внутриклеточных механизмов и их использовании в собственных интересах вируса. Большинство этих белков содержат многочисленные мотивы, гомологичные человеческим белкам, в том числе таким важным, как интерлейкин-7. Возможно, эта гомология является важным фактором, позволяющим «обмануть» иммунную систему на начальных стадиях инфекции и спровоцировать аутоиммунный ответ впоследствии. Гомология белков SARS CoV-2, с одной стороны, и белков вкусовых и обонятельных рецепторов — с другой, возможно, объясняетпричины нарушения восприятия вкусовых и обонятельных раздражителей, характерного для COVID-инфекции. SARS CoV-2 proteins are molecules with a mass of several tens to several thousand amino acid residues. There are structural and nonstructural proteins. The former include Spike glycoprotein (S), small membrane envelope protein (E), membrane protein (M), and nucleoprotein or nucleocapsid (N). The second group consists of 16 nonstructural proteins (Nsp1-16, including replicase&nbsp; polyproteins RPP 1a and 1ab) and 10 accessory factors or open reading frame proteins (ORF3a, 3b, 6, 7a, 7b, 8, 9b, 9c, 10 and 14). Proteins S, E and M, located outside and in the membrane of a virion, are involved in the contact of the virion with a cell and penetration into it. Other proteins are involved in the hijacking of intracellular mechanisms and their use in the virus’s own interests. Most of these proteins contain numerous motifs that are homologous to human proteins including such important ones as Interleukin-7. Perhaps this homology is an important factor in deceiving the immune system at the initial stages of infection and provoking an autoimmune response later. The homology of SARS CoV-2 proteins on the one hand and taste and olfactory receptor proteins on the other hand may possibly explain the causes of the impaired perception of taste and olfactory stimuli characteristic of COVID infection.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Pillai, Harikrishna, Harikumar, S. Harikumar, S, Pramod kumar, R. Pramod kumar, R und Anuraj, K. S. Anuraj, K.S. „Dna Mimicry by Proteins“. International Journal of Scientific Research 3, Nr. 8 (01.06.2012): 471–72. http://dx.doi.org/10.15373/22778179/august2014/150.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Littler, Dene R., Stephen J. Harrop, Sophia C. Goodchild, Juanita M. Phang, Andrew V. Mynott, Lele Jiang, Stella M. Valenzuela et al. „The enigma of the CLIC proteins: Ion channels, redox proteins, enzymes, scaffolding proteins?“ FEBS Letters 584, Nr. 10 (18.01.2010): 2093–101. http://dx.doi.org/10.1016/j.febslet.2010.01.027.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Chakraborty, Asit Kumar. „Multi-Alignment Comparison of Coronavirus Non-Structural Proteins Nsp13- Nsp16 with Ribosomal Proteins and other DNA/RNA Modifying Enzymes Suggested their Roles in the Regulation of Host Protein Synthesis“. International Journal of Clinical & Medical Informatics 3, Nr. 1 (01.06.2020): 7–19. http://dx.doi.org/10.46619/ijcmi.2020.1024.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Hung, Kuo-Wei, Chun-Chia Cheng, Yi-Chao Lin, Tsan-Hung Yu, Pei-Ju Fan, Chi-Fon Chang, Shih-Feng Tsai und Tai-Huang Huang. „2P089 NMR Studies of Virulence-associated Proteins and Small Conserved Hypothetical Proteins in Klebsiella Pneumoniae(30. Protein function (II),Poster Session,Abstract,Meeting Program of EABS & BSJ 2006)“. Seibutsu Butsuri 46, supplement2 (2006): S318. http://dx.doi.org/10.2142/biophys.46.s318_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Jeffery, Constance J. „An introduction to protein moonlighting“. Biochemical Society Transactions 42, Nr. 6 (17.11.2014): 1679–83. http://dx.doi.org/10.1042/bst20140226.

Der volle Inhalt der Quelle
Annotation:
Moonlighting proteins comprise a class of multifunctional proteins in which a single polypeptide chain performs multiple physiologically relevant biochemical or biophysical functions. Almost 300 proteins have been found to moonlight. The known examples of moonlighting proteins include diverse types of proteins, including receptors, enzymes, transcription factors, adhesins and scaffolds, and different combinations of functions are observed. Moonlighting proteins are expressed throughout the evolutionary tree and function in many different biochemical pathways. Some moonlighting proteins can perform both functions simultaneously, but for others, the protein's function changes in response to changes in the environment. The diverse examples of moonlighting proteins already identified, and the potential benefits moonlighting proteins might provide to the organism, such as through coordinating cellular activities, suggest that many more moonlighting proteins are likely to be found. Continuing studies of the structures and functions of moonlighting proteins will aid in predicting the functions of proteins identified through genome sequencing projects, in interpreting results from proteomics experiments, in understanding how different biochemical pathways interact in systems biology, in annotating protein sequence and structure databases, in studies of protein evolution and in the design of proteins with novel functions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Ma, Yingxuan, und Kim Johnson. „Arabinogalactan-proteins“. WikiJournal of Science 4, Nr. 1 (2021): 2. http://dx.doi.org/10.15347/wjs/2021.002.

Der volle Inhalt der Quelle
Annotation:
Arabinogalactan-proteins (AGPs) are highly glycosylated proteins (glycoproteins) found in the cell walls of plants. AGPs account for only a small portion of the cell wall, usually no more than 1% of dry mass of the primary wall. AGPs are members of the hydroxyproline-rich glycoprotein (HRGP) superfamily that represent a large and diverse group of glycosylated wall proteins. AGPs have attracted considerable attention due to their highly complex structures and potential roles in signalling. In addition, they have industrial and health applications due to their chemical/physical properties (water-holding, adhesion and emulsification). Glycosylation can account for more than 90% of the total mass. AGPs have been reported in a wide range of higher plants in seeds, roots, stems, leaves and inflorescences. They have also been reported in secretions of cell culture medium of root, leaf, endosperm and embryo tissues, and some exudate producing cell types such as stylar canal cells are capable of producing lavish amounts of AGPs.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Löer, Birgit, und Michael Hoch. „Wech proteins“. Cell Adhesion & Migration 2, Nr. 3 (Juli 2008): 177–79. http://dx.doi.org/10.4161/cam.2.3.6579.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Yarotskyy, Viktor, und Robert T. Dirksen. „RGK proteins“. Channels 8, Nr. 4 (Juli 2014): 286–87. http://dx.doi.org/10.4161/chan.29982.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Flannery, Maura C. „Designing Proteins“. American Biology Teacher 48, Nr. 2 (01.02.1986): 112–14. http://dx.doi.org/10.2307/4448220.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Guo, Shiny Shengzhen, und Reinhard Fässler. „KANK proteins“. Current Biology 32, Nr. 19 (Oktober 2022): R990—R992. http://dx.doi.org/10.1016/j.cub.2022.08.073.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

GÖKSEL, Şeyma, und Mustafa AKÇELİK. „Autotransporter Proteins“. Uluslararası Muhendislik Arastirma ve Gelistirme Dergisi 13, Nr. 3 (31.12.2021): 49–57. http://dx.doi.org/10.29137/umagd.1037361.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Danilova, Lubov A. „Glycated proteins“. Pediatrician (St. Petersburg) 10, Nr. 5 (28.01.2020): 79–86. http://dx.doi.org/10.17816/ped10579-86.

Der volle Inhalt der Quelle
Annotation:
Glycation is a biological reaction that occurs in all proteins. Thisreaction proceeds more slowly in healthy subjects and more rapidly in patients suffering from a hyperglycemia. Glycated proteins cannot fulfill their functions that could lead to metabolic disorders. The process of glycation leads to building of advanced glycation end-products (AGEs). Thestructureof AGEs has not been fully researched yet. Glycated proteins have diagnostic meaning in different health conditions and not only in patients with diabetes mellitus. Determination of glycated proteins level (hemoglobin and plasma proteins) in diagnostics of diabetes mellitus and the effectiveness of its treatment; measurements of glycated proteins could be used as a predictor of different illnesses and their complications. Glycated hemoglobin was researched in children with diabetes mellitus of different severity. It has been shown that the level of glycated proteins does not always correlate with blood sugar level. Results of glycated proteins measurements in patients with thyroid disorders shows that the glycation takes place not only in patients with diabetes mellitus, but also with other illnesses without hyperglycemia. Our research in patients with diabetes mellitus has shown that the measured level of glycated proteins and plasma proteins could be more significant in the course of disease than the level of blood sugar. Compensation of diabetes mellitus in children in regard of the blood sugar level does not always correlate with the level of glycated proteins. This assumption could lead to the conclusion that only the combination of measurements like blood sugar, glycated hemoglobin and glycated proteins could give a full picture of disease compensation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Mudgil, Yashwanti, und Alan M. Jones. „NDR proteins“. Plant Signaling & Behavior 5, Nr. 8 (August 2010): 1017–18. http://dx.doi.org/10.4161/psb.5.8.12290.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Thomas, Clément, Céline Hoffmann, Sabrina Gatti und André Steinmetz. „LIM Proteins“. Plant Signaling & Behavior 2, Nr. 2 (März 2007): 99–100. http://dx.doi.org/10.4161/psb.2.2.3614.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Roterman, Irena, Mateusz Banach und Leszek Konieczny. „Antifreeze proteins“. Bioinformation 13, Nr. 12 (31.12.2017): 400–401. http://dx.doi.org/10.6026/97320630013400.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Glomset, John A., Michael H. Gelb und Christopher C. Farnsworth. „Geranylgeranylated proteins“. Biochemical Society Transactions 20, Nr. 2 (01.05.1992): 479–84. http://dx.doi.org/10.1042/bst0200479.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

DECLERCQ, JEROEN, KAREN HENSEN, WIM J. VAN DE VEN und MARCELA CHAVEZ. „PLAG Proteins“. Annals of the New York Academy of Sciences 1010, Nr. 1 (Dezember 2003): 264–65. http://dx.doi.org/10.1196/annals.1299.045.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Anderson, Alexandra, und Rachel McMullan. „G-proteins“. Worm 1, Nr. 4 (Oktober 2012): 196–201. http://dx.doi.org/10.4161/worm.20466.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Demming, Anna. „Precision proteins“. Nanotechnology 21, Nr. 23 (17.05.2010): 230201. http://dx.doi.org/10.1088/0957-4484/21/23/230201.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

MACEK, F. „Microbial proteins.“ Kvasny Prumysl 32, Nr. 11 (01.11.1986): 258–62. http://dx.doi.org/10.18832/kp1986072.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Gehring, W. J., M. Affolter und T. Burglin. „Homeodomain Proteins“. Annual Review of Biochemistry 63, Nr. 1 (Juni 1994): 487–526. http://dx.doi.org/10.1146/annurev.bi.63.070194.002415.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Willert, K., und R. Nusse. „Wnt Proteins“. Cold Spring Harbor Perspectives in Biology 4, Nr. 9 (01.09.2012): a007864. http://dx.doi.org/10.1101/cshperspect.a007864.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Sansom, Clare. „Fluorescent proteins“. Biochemist 35, Nr. 5 (01.10.2013): 40–41. http://dx.doi.org/10.1042/bio03505040.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Yost, C. Spencer. „G Proteins“. Anesthesia & Analgesia 77, Nr. 4 (Oktober 1993): 822???834. http://dx.doi.org/10.1213/00000539-199310000-00029.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Vale, Ronald D. „Aaa Proteins“. Journal of Cell Biology 150, Nr. 1 (10.07.2000): F13—F20. http://dx.doi.org/10.1083/jcb.150.1.f13.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Fujiwara, Toru, Eiji Nambara, Kazutoshi Yamagishi, Derek B. Goto und Satoshi Naito. „Storage Proteins“. Arabidopsis Book 1 (Januar 2002): e0020. http://dx.doi.org/10.1199/tab.0020.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Bussell, Katrin. „Territorial proteins“. Nature Reviews Molecular Cell Biology 5, Nr. 10 (Oktober 2004): 774. http://dx.doi.org/10.1038/nrm1514.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Brummer, Tilman, Carsten Schmitz-Peiffer und Roger J. Daly. „Docking proteins“. FEBS Journal 277, Nr. 21 (30.09.2010): 4356–69. http://dx.doi.org/10.1111/j.1742-4658.2010.07865.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie