Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Proteins – Affinity labeling“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Proteins – Affinity labeling" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Proteins – Affinity labeling"
SWEET, FREDERICK, und GARY L. MURDOCK. „Affinity Labeling of Hormone-Specific Proteins*“. Endocrine Reviews 8, Nr. 2 (Mai 1987): 154–84. http://dx.doi.org/10.1210/edrv-8-2-154.
Der volle Inhalt der QuelleVinkenborg, Jan L., Günter Mayer und Michael Famulok. „Aptamer-Based Affinity Labeling of Proteins“. Angewandte Chemie International Edition 51, Nr. 36 (02.08.2012): 9176–80. http://dx.doi.org/10.1002/anie.201204174.
Der volle Inhalt der QuelleLöw, Andreas, Heinz G. Faulhammer und Mathias Sprinzl. „Affinity labeling of GTP-binding proteins in cellular extracts“. FEBS Letters 303, Nr. 1 (25.05.1992): 64–68. http://dx.doi.org/10.1016/0014-5793(92)80478-y.
Der volle Inhalt der QuelleSong, Yinan, Feng Xiong, Jianzhao Peng, Yi Man Eva Fung, Yiran Huang und Xiaoyu Li. „Introducing aldehyde functionality to proteins using ligand-directed affinity labeling“. Chemical Communications 56, Nr. 45 (2020): 6134–37. http://dx.doi.org/10.1039/d0cc01982h.
Der volle Inhalt der QuelleMaldonado, H. M., und P. M. Cala. „Labeling of the Amphiuma erythrocyte K+/H+ exchanger with H2DIDS“. American Journal of Physiology-Cell Physiology 267, Nr. 4 (01.10.1994): C1002—C1012. http://dx.doi.org/10.1152/ajpcell.1994.267.4.c1002.
Der volle Inhalt der QuelleChen, Xi, Fu Li und Yao-Wen Wu. „Chemical labeling of intracellular proteins via affinity conjugation and strain-promoted cycloadditions in live cells“. Chemical Communications 51, Nr. 92 (2015): 16537–40. http://dx.doi.org/10.1039/c5cc05208d.
Der volle Inhalt der QuelleMasselin, Arnaud, Antoine Petrelli, Maxime Donzel, Sylvie Armand, Sylvain Cottaz und Sébastien Fort. „Unprecedented Affinity Labeling of Carbohydrate-Binding Proteins with s-Triazinyl Glycosides“. Bioconjugate Chemistry 30, Nr. 9 (12.08.2019): 2332–39. http://dx.doi.org/10.1021/acs.bioconjchem.9b00432.
Der volle Inhalt der QuelleVale, M. G. „Affinity labeling of calmodulin-binding proteins in skeletal muscle sarcoplasmic reticulum.“ Journal of Biological Chemistry 263, Nr. 26 (September 1988): 12872–77. http://dx.doi.org/10.1016/s0021-9258(18)37642-7.
Der volle Inhalt der QuelleLaudon, Moshe, und Nava Zisapel. „Melatonin binding proteins identified in the rat brain by affinity labeling“. FEBS Letters 288, Nr. 1-2 (19.08.1991): 105–8. http://dx.doi.org/10.1016/0014-5793(91)81013-x.
Der volle Inhalt der QuelleKuwahara, Daichi, Takahiro Hasumi, Hajime Kaneko, Madoka Unno, Daisuke Takahashi und Kazunobu Toshima. „A solid-phase affinity labeling method for target-selective isolation and modification of proteins“. Chem. Commun. 50, Nr. 98 (2014): 15601–4. http://dx.doi.org/10.1039/c4cc06783e.
Der volle Inhalt der QuelleDissertationen zum Thema "Proteins – Affinity labeling"
Lui, James Kwok Ching. „A fluorescent labelling technique to detect changes in the thiol redox state of proteins following mild oxidative stress“. University of Western Australia. School of Biomedical, Biomolecular and Chemical Sciences, 2008. http://theses.library.uwa.edu.au/adt-WU2008.0056.
Der volle Inhalt der QuelleSong, Zhi-Ning. „Development of novel affinity-guided catalysts for specific labeling of endogenous proteins in living systems“. Kyoto University, 2017. http://hdl.handle.net/2433/228238.
Der volle Inhalt der QuelleCiccotosto, Silvana. „The preparation and evaluation of N-acetylneuraminic acid derivatives as probes of sialic acid-recognizing proteins“. Monash University, Dept. of Medicinal Chemistry, 2004. http://arrow.monash.edu.au/hdl/1959.1/9649.
Der volle Inhalt der QuelleTran, Hang T. „Photocleavable Linker for Protein Affinity Labeling to Identify the Binding Target of KCN-1“. Digital Archive @ GSU, 2010. http://digitalarchive.gsu.edu/chemistry_theses/35.
Der volle Inhalt der QuelleKaminska, Monika. „New activity-based probes to detect matrix metalloproteases“. Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS538/document.
Der volle Inhalt der QuelleMatrix MetalloProteases (MMPs) as zinc endopeptidases have a wide range of biological functions, and changes in their proteolytic activity underlie many biological disorders. Since their proteolytic activity has to be tightly controlled to prevent tissue destruction, theses proteases are subjected to numerous posttranslational modifications in vivo. They are secreted under latent forms outside of the cells, and are subsequently processed into their functional form that can be further inhibited by endogenous inhibitors. Due to their delineated area of activation, MMP active forms have long been considered for their unique ability to degrade extracellular substrates. However, turnover and breakdown of the extracellular matrix are neither the sole nor the main function of MMPs. These enzymes can indeed process a wide variety of non-matrix substrates and are involved in the regulation of multiple aspects of tumor progression, immunity and inflammation. To add further complexity to MMPs biology, some members within the family were recently reported to have intracellular localization associated to non-proteolytic functions. These observations but also those evidencing that some MMPs participate in disease progression while others have a protective function, stress the need to better document their spatial and temporal activation in various biological contexts.Activity-based protein profiling (ABPP) aims to analyze the functional state of proteins within complex biological samples. To this purpose, activity-based probes (ABPs) that react with enzymes in a mechanism-based manner have been successfully developed for the profiling of several enzymes including serine and cysteine proteases. A typical Activity-Based probe (ABP) is composed of i) a reactive warhead, which reacts in a covalent manner with enzyme active site residues, ii) a targeting moiety that imposes selectivity upon the reactive group and iii) a detectable group for subsequent analyses. This approach is not applicable to MMPs, which lack a targetable nucleophile involved in the catalysis. In this respect, all ABPs directed to MMPs are affinity-based probes (AfBPs) containing within their structure a photo cross-linking group that promotes the formation of a covalent complex upon UV-irradiation. Such photoactivatable probes have been successfully developed for the detection of MMPs under their active forms in fluids and tissue extracts, but not in living animals where the photo-activation step is not feasible.By relying on a favorable structural context and by exploiting the ligand-directed acyl imidazole (LDAI) chemistry, we have identified a novel series of AfBPs capable of covalently modifying matrix metalloproteases without making use of photo-activation. These active-site-directed probes whose structure was derived from that of a MMP12 selective inhibitor harbored a reactive acyl imidazole in their P3' position. They demonstrated their labelling specificity in vitro by covalently modifying a single Lysine residue within the MMP-12 S3' region. We also showed that these probes only targeted functional states of hMMP-12 and spared forms whose active site was occluded either by a synthetic or a natural inhibitor. We have validated the ability of these chemical probes to efficiently label human MMP12 in complex proteomes. In this case, down to 50 ng of hMMP12 corresponding to 0.05% of the whole proteome can be labelled and detected by in-gel fluorescence analysis. We demonstrated that this approach also allowed detecting endogenous MMPs secreted by stimulated-macrophages. In addition, by modifying the nature of the targeting moiety, we have extended this affinity-labeling approach to six other MMPs.By developing the first “photo activation-free” strategy to covalently modify active forms of MMPs, the unresolved proteomic profiling of native MMPs should be now accessible both in complex proteomes and in preclinical model in which MMPs are potential relevant targets
Cigler, Marko [Verfasser], Kathrin [Akademischer Betreuer] Lang, Kathrin [Gutachter] Lang und Stephan [Gutachter] Hacker. „Genetically encoding unnatural amino acids: Novel tools for protein labelling and chemical stabilisation of low-affinity protein complexes / Marko Cigler ; Gutachter: Kathrin Lang, Stephan Hacker ; Betreuer: Kathrin Lang“. München : Universitätsbibliothek der TU München, 2019. http://d-nb.info/1220322318/34.
Der volle Inhalt der QuelleGoulding, Ann Marie. „Biochemical applications of DsRed-monomer utilizing fluorescence and metal-binding affinity“. 2011. http://hdl.handle.net/1805/2480.
Der volle Inhalt der QuelleThe discovery and isolation of naturally occurring fluorescent proteins, FPs, have provided much needed tools for molecular and cellular level studies. Specifically the cloning of green fluorescent protein, GFP, revolutionized the field of biotechnology and biochemical research. Recently, a red fluorescent protein, DsRed, isolated from the Discosoma coral has further expanded the pallet of available fluorescent tools. DsRed shares only 23 % amino acid sequence homology with GFP, however the X-ray crystal structures of the two proteins are nearly identical. DsRed has been subjected to a number of mutagenesis studies, which have been found to offer improved physical and spectral characteristics. One such mutant, DsRed-Monomer, with a total of 45 amino acid substitutions in native DsRed, has shown improved fluorescence characteristics without the toxic oligomerization seen for the native protein. In our laboratory, we have demonstrated that DsRed proteins have a unique and selective copper-binding affinity, which results in fluorescence quenching. This copper-binding property was utilized in the purification of DsRed proteins using copper-bound affinity columns. The work presented here has explored the mechanism of copper-binding by DsRed-Monomer using binding studies, molecular biology, and other biochemical techniques. Another focus of this thesis work was to demonstrate the applications of DsRed-Monomer in biochemical studies based on the copper-binding affinity and fluorescence properties of the protein. To achieve this, we have focused on genetic fusions of DsRed-Monomer with peptides and proteins. The work with these fusions have demonstrated the feasibility of using DsRed-Monomer as a dual functional tag, as both an affinity tag and as a label in the development of a fluorescence assay to detect a ligand of interest. Further, a complex between DsRed-Monomer-bait peptide/protein fusion and an interacting protein has been isolated taking advantage of the copper-binding affinity of DsRed-Monomer. We have also demonstrated the use of non-natural amino acid analogues, incorporated into the fluorophore of DsRed-Monomer, as a tool for varying the spectral properties of the protein. These mutations demonstrated not only shifted fluorescence emission compared to the native protein, but also improved extinction coefficients and quantum yields.
Krusemark, Casey J. „Synthetic chemical approaches to proteomics : affinity labeling and protein functional group modification /“. 2007. http://www.library.wisc.edu/databases/connect/dissertations.html.
Der volle Inhalt der QuelleBücher zum Thema "Proteins – Affinity labeling"
Protein affinity tags: Methods and protocols. New York: Humana Press, 2014.
Den vollen Inhalt der Quelle findenViktorovich, Vlasov Valentin, Hrsg. Affinity modification of biopolymers. Boca Raton, Fla: CRC Press, 1989.
Den vollen Inhalt der Quelle finden1949-, Müller S. C., Hrsg. Synthetic peptides as antigens. Amsterdam: Elsevier, 1999.
Den vollen Inhalt der Quelle finden1940-, Creighton Thomas E., Hrsg. Protein function: A practical approach. Oxford: IRL Press, 1989.
Den vollen Inhalt der Quelle finden1940-, Creighton Thomas E., Hrsg. Protein function: A practical approach. 2. Aufl. Oxford: IRL Press at Oxford University Press, 1997.
Den vollen Inhalt der Quelle findenCreighton, Thomas E. Protein Structure and Protein Function: A Practical Approach 2 Volume Set (Practical Approach Series, 175). Oxford University Press, USA, 1997.
Den vollen Inhalt der Quelle findenProtein Structure and Protein Function: A Practical Approach 2 Volume Set (The Practical Approach Series , No 174&175). 2. Aufl. Oxford University Press, USA, 1997.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Proteins – Affinity labeling"
Tamura, Tomonori, und Itaru Hamachi. „Labeling Proteins by Affinity-Guided DMAP Chemistry“. In Site-Specific Protein Labeling, 229–42. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-2272-7_16.
Der volle Inhalt der QuelleColman, Roberta F. „Advances in Affinity Labeling of Purine Nucleotide Sites in Dehydrogenases“. In Proteins, 569–80. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1787-6_57.
Der volle Inhalt der QuelleMisono, Kunio S. „Atrial Natriuretic Factor Receptor in Adrenal Plasma Membrane: Identification by Photo-Affinity Labeling“. In Proteins, 641–48. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1787-6_64.
Der volle Inhalt der QuellePeter, Marcus E., und Mathias Sprinzl. „Affinity Labeling of the GDP/GTP Binding Site in Thermus Thermophilus Elongation Factor Tu“. In The Guanine — Nucleotide Binding Proteins, 99–110. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4757-2037-2_10.
Der volle Inhalt der QuelleChen, Xi, Fu Li und Yao-Wen Wu. „Affinity Conjugation for Rapid and Covalent Labeling of Proteins in Live Cells“. In Methods in Molecular Biology, 191–202. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9537-0_15.
Der volle Inhalt der QuelleLandgraf, Peter, Elmer R. Antileo, Erin M. Schuman und Daniela C. Dieterich. „BONCAT: Metabolic Labeling, Click Chemistry, and Affinity Purification of Newly Synthesized Proteomes“. In Site-Specific Protein Labeling, 199–215. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-2272-7_14.
Der volle Inhalt der QuelleSinger, S. J. „Affinity Labelling of Protein Active Sites“. In Ciba Foundation Symposium - Molecular Properties of Drug Receptors, 229–46. Chichester, UK: John Wiley & Sons, Ltd., 2008. http://dx.doi.org/10.1002/9780470719763.ch11.
Der volle Inhalt der QuelleJonák, Jiří, Karel Karas und Ivan Rychlík. „Characterization of Elongation Factor Tu from Bacillus Subtilis Modified by Affinity Labelling“. In The Guanine — Nucleotide Binding Proteins, 111–19. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4757-2037-2_11.
Der volle Inhalt der QuelleXiao, Zhen, und Timothy D. Veenstra. „Comparison of Protein Expression by Isotope-Coded Affinity Tag Labeling“. In Methods in Molecular Biology™, 181–92. Totowa, NJ: Humana Press, 2008. http://dx.doi.org/10.1007/978-1-59745-117-8_10.
Der volle Inhalt der QuelleJi, Tae H., Ryuichiro Nishimura und Inhae Ji. „Chapter 11 Affinity Labeling of Binding Proteins for the Study of Endocytic Pathways“. In Methods in Cell Biology, 277–304. Elsevier, 1989. http://dx.doi.org/10.1016/s0091-679x(08)61176-0.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Proteins – Affinity labeling"
Kruithof, E. KO, W. D. Schleuning und F. Bachman. „PLASMINOGEN ACTIVATOR INHIBITOR BIOCHEMICAL AND CLINICAL ASPECTS“. In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644764.
Der volle Inhalt der Quelle