Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Proteinopathy“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Proteinopathy" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Proteinopathy"
Taylor, J. Paul. „Multisystem proteinopathy: Table“. Neurology 85, Nr. 8 (24.07.2015): 658–60. http://dx.doi.org/10.1212/wnl.0000000000001862.
Der volle Inhalt der QuelleValderhaug, Vibeke D., Kristine Heiney, Ola Huse Ramstad, Geir Bråthen, Wei-Li Kuan, Stefano Nichele, Axel Sandvig und Ioanna Sandvig. „Early functional changes associated with alpha-synuclein proteinopathy in engineered human neural networks“. American Journal of Physiology-Cell Physiology 320, Nr. 6 (01.06.2021): C1141—C1152. http://dx.doi.org/10.1152/ajpcell.00413.2020.
Der volle Inhalt der QuelleParaskevas, George P., Mara Bourbouli, Ioannis Zaganas und Elisabeth Kapaki. „The emerging TDP-43 proteinopathy“. Neuroimmunology and Neuroinflammation 5, Nr. 5 (10.05.2018): 17. http://dx.doi.org/10.20517/2347-8659.2018.18.
Der volle Inhalt der QuelleBhuiyan, Md Shenuarin, J. Scott Pattison, Hanna Osinska, Jeanne James, James Gulick, Patrick M. McLendon, Joseph A. Hill, Junichi Sadoshima und Jeffrey Robbins. „Enhanced autophagy ameliorates cardiac proteinopathy“. Journal of Clinical Investigation 123, Nr. 12 (01.11.2013): 5284–97. http://dx.doi.org/10.1172/jci70877.
Der volle Inhalt der QuelleTaylor, Laura M., Pamela J. McMillan, Brian C. Kraemer und Nicole F. Liachko. „Tau tubulin kinases in proteinopathy“. FEBS Journal 286, Nr. 13 (22.05.2019): 2434–46. http://dx.doi.org/10.1111/febs.14866.
Der volle Inhalt der QuelleChen, Han-Jou, und Jacqueline C. Mitchell. „Mechanisms of TDP-43 Proteinopathy Onset and Propagation“. International Journal of Molecular Sciences 22, Nr. 11 (02.06.2021): 6004. http://dx.doi.org/10.3390/ijms22116004.
Der volle Inhalt der QuelleDeng, Jianwen, Peng Wang, Xiaoping Chen, Haipeng Cheng, Jianghong Liu, Kazuo Fushimi, Li Zhu und Jane Y. Wu. „FUS interacts with ATP synthase beta subunit and induces mitochondrial unfolded protein response in cellular and animal models“. Proceedings of the National Academy of Sciences 115, Nr. 41 (24.09.2018): E9678—E9686. http://dx.doi.org/10.1073/pnas.1806655115.
Der volle Inhalt der QuelleStepenko, Yulia V., Veronika S. Shmigerova, Darya A. Kostina, Olesya V. Shcheblykina, Nina I. Zhernakova, Alexey V. Solin, Natalia V. Koroleva, Vera A. Markovskaya, Olga V. Dudnikova und Anton A. Bolgov. „Study of the neuroprotective properties of the heteroreceptor EPOR/CD131 agonist of peptide structure in tau-proteinopathy modeling“. Research Results in Pharmacology 10, Nr. 2 (17.06.2024): 41–47. http://dx.doi.org/10.18413/rrpharmacology.10.492.
Der volle Inhalt der QuelleZheng, Qingwen, Huabo Su, Mark J. Ranek und Xuejun Wang. „Autophagy and p62 in Cardiac Proteinopathy“. Circulation Research 109, Nr. 3 (22.07.2011): 296–308. http://dx.doi.org/10.1161/circresaha.111.244707.
Der volle Inhalt der QuelleHasegawa, Masato, Tetsuaki Arai, Takashi Nonaka, Fuyuki Kametani, Mari Yoshida, Kenji Ikeda und Haruhiko Akiyama. „Proteomic analyses of TDP-43 proteinopathy“. Neuroscience Research 68 (Januar 2010): e35. http://dx.doi.org/10.1016/j.neures.2010.07.399.
Der volle Inhalt der QuelleDissertationen zum Thema "Proteinopathy"
Armstrong, Bryson Walter. „The role of karyopherin-alpha in the pathogenesis of TDP-43 proteinopathy“. Thesis, University of British Columbia, 2013. http://hdl.handle.net/2429/45074.
Der volle Inhalt der QuelleKornfield, James M. „TDP-43 proteinopathy: tracing the roots of a newly classified neurodegenerative disease“. Thesis, Boston University, 2013. https://hdl.handle.net/2144/21197.
Der volle Inhalt der QuelleTAR DNA Binding Protein-43 (TDP-43) proteinopathy is a disease pathology that underlies a broad field of neurodegenerative disorders. Most prominently, TDP-43 aggregates are the hallmark of Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Lobar Degeneration (FTLD). The implication of TDP-43 in ALS, in particular, has helped initiate a cascade of research to determine the properties of the previously obscure protein. From these studies, it is now known that TDP-43 is a DNA and RNA binding protein, important for the splicing and regulation of many transcripts. In the disease state, TDP-43 is modified in a way that fuels its accumulation into cytoplasmic aggregates called inclusions. This paper will delineate the current understanding of the mechanisms behind TDP-43 proteinopathy and the resultant clinical conditions. The body of evidence firmly supports a clinical spectrum of TDP-43 proteinopathy that ranges between pure motor neuron disease (MND) and pure frontotemporal dementia (FTD). It also appears that the root cause of neurodegeneration in these disorders comes about through a combination of a gain of toxic function and a loss of normal TDP-43. Continued research into the molecular processes leading to the capitulation of TDP-43 holds great promise for the development of new drug targets to help treat the spectrum of TDP-43 proteinopathy.
2031-01-01
PISCIOTTANI, ALESSANDRA. „Axonal mRNA dysregulation in a cellular model of TDP-43 proteinopathy: a functional and -omic analysis“. Doctoral thesis, Università Vita-Salute San Raffaele, 2022. http://hdl.handle.net/20.500.11768/128351.
Der volle Inhalt der QuelleLa Sclerosi Laterale Amiotrofica (SLA) è una malattia neurodegenerativa incurabile che colpisce principalmente il primo e il secondo motoneurone. Solo il 10% dei casi sono familiari, mentre la maggior parte sono sporadici. TDP-43, codificata dal gene TARDBP, è una proteina legante l’RNA che ha un ruolo regolatorio essenziale nel metabolismo dell’RNA, dalla trascrizione e splicing al trasporto e traduzione. Mentre le mutazioni di TARDBP rappresentano solo il 2-5% dei casi di SLA, il 97% dei pazienti, sia sporadici che familiari, mostrano una deplezione nucleare di TDP-43 così come il suo accumulo citoplasmatico e la formazione di aggregati, noti come TDP-43 proteinopatia. Diverse evidenze suggeriscono che la SLA sia una assonopatia distale, in cui la degenerazione assonale precede la morte del motoneurone. Poichè la traduzione assonale è essenziale per lo sviluppo, il mantenimento e il funzionamento di questo compartimento subcellulare, noi ipotizziamo che livelli alterati di mRNA dovuti alla deregolazione di TDP-43 può alterare la biologia assonale nei motoneuroni, un tipo cellulare il cui l’assone rappresenta il 99% del volume totale della cellula. In questo progetto abbiamo caratterizzato colture altamente arricchite di motoneuroni corticali murini overesprimenti TDP-43 wt (wtTDP) o con una mutazione familiare, A315T (mutTDP). Entrambi i modelli presentano un accumulo citoplasmatico di aggregati positivi per TDP-43, accompagnato da una ridotta traduzione assonale degli mRNA, aumentato stress ossidativo, alterata esocitosi e cambiamenti nell’omeostati del calcio. Mediante l’uso di camerette microfluidiche, assoni e corpi cellulari wt- e mutTDP sono stati fisicamente separati, permettendo un’analisi imparziale di RNA-seq di entrambi i compartimenti subcellulari. Mediante un protocollo con gradiente di saccarosio sviluppato dal laboratorio di Gabriella Viero, gli mRNA polisomali e sub-polisomali sono stati analizzati separatamente e comparati ai neuroni di controllo. Mi sono focalizzata sui cambiamenti del translatoma e trascrittoma relativi alle alterazioni funzionali osservati dal nostro gruppo. Sia gli assoni wtTDP che mutTDP presentano una evidente deregolazione dei trascritti polisomali coinvolti nella traduzione degli mRNA, nella risposta allo stress ossidativo e nella funzione presinaptica, sottolineando l’importanza della traduzione assonale nei processi chiave funzionali e omeostatici. Infine, le registrazioni di elettrofisiologia dei neuroni wtTDP e mutTDP hanno mostrato un aumento significativo delle sinapsi elettriche. Oltre a rappresentare potenzialmente un meccanismo di compensazione della ridotta connettività dei neuroni wtTDP e TDP-43, le gap junctions e gli emicanali, potrebbero contribuire alla diffusione di piccole molecole tossiche e una diffusione maladattiva del danno neuronale a partire dalla sua origine focale.
Ury-Thiery, Vicky. „Agrégation in vitro de la protéine amyloïde Tau et étude de son impact sur des modèles membranaires par différentes méthodes biophysiques“. Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0440.
Der volle Inhalt der QuelleNeurodegenerative diseases, such as Alzheimer’s and Parkinson’s, affect cognitive and motor functions. They are characterized by a progressive loss of neurons, with no possibility of regeneration. With an aging population, these predominantly age-related diseases represent a major societal challenge. The lack of early diagnosis, effective treatments, and understanding of the underlying mechanisms highlights the need for further investigation. Patients suffering from these diseases exhibit abnormal protein accumulations in the form of insoluble aggregates, within or near brain cells. Although each proteinopathy presents specific aggregates, they share common features, notably their amyloid structure. These amyloids, formed by the misfolded protein monomers’ self-assembly through stacking, adopt a characteristic cross-β structure. Several pathogenic amyloid proteins have been identified and are associated with various neurodegenerative diseases. The Tau protein, implicated in Alzheimer’s disease and more broadly in a group of dementias known as tauopathies, is primarily located in neurons, where it stabilizes microtubules, structural elements of the cellular cytoskeleton. However, under pathological conditions, Tau dissociates from the microtubules, becomes hyperphosphorylated, and forms fibrillar amyloid aggregates. The exact mechanisms of this aggregation remain poorly understood. The study of Tau aggregation relies on the in vitro production of amyloid fibers. Due to its high solubility associated with its positive charge, fiber formation requires the addition of polyanionic molecules, called cofactors, such as heparin (a polysaccharide), RNA, or lipids. However, uncertainties remain regarding the exact role of these cofactors: do they simply catalyze aggregation, or are they integrated into the fiber structure? If so, what impact does this have on the morphology of the aggregates? Tau's ability to aggregate in the presence of lipids raises questions about its behavior in relation to the different membranes of neurons. Tau’s interaction with plasma membranes has been demonstrated and may play a role in both physiological and pathological processes. Does Tau, in the presence of anionic lipids, compromise membrane integrity? What about non-anionic lipids? To address these questions, this thesis project combines several biophysical approaches: attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR), atomic force microscopy (AFM), transmission electron microscopy (TEM), and plasmon waveguide resonance (PWR). The study is structured around two main axes: (i) characterizing Tau aggregation in the presence of different anionic cofactors (heparin, RNA, phospholipids) and studying their impact on fiber morphology; (ii) assessing the effect of Tau's interaction with lipid membranes of varying compositions on membrane integrity. The results of this thesis provide new insights into the pathogenic mechanisms of Tau and may contribute to a better understanding of tauopathies as well as the development of therapeutic strategies
Buchteile zum Thema "Proteinopathy"
Thal, Dietmar R., Melissa E. Murray und Dennis W. Dickson. „Alzheimer's disease (Aβ and Tau proteinopathy)“. In Greenfield's Neuropathology 10e Set, 1012–41. 10. Aufl. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003389699-32.
Der volle Inhalt der QuelleJosephs, Keith A. „Clinical Aspects of TDP‐43 Proteinopathy, Neurofilament Inclusion Body Disease and Dementias Lacking Distinctive Proteinopathy“. In Dementias, 377–82. Elsevier, 2008. http://dx.doi.org/10.1016/s0072-9752(07)01235-3.
Der volle Inhalt der QuelleBharathi, Vidhya, Amandeep Girdhar und Basant K. Patel. „TDP-43 proteinopathy mechanisms from non-mammalian model systems“. In TDP-43 and Neurodegeneration, 153–81. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-12-820066-7.00002-3.
Der volle Inhalt der QuelleEspay, Alberto J., Karl Herrup und Timothy Daly. „Finding the falsification threshold of the toxic proteinopathy hypothesis in neurodegeneration“. In Precision Medicine in Neurodegenerative Disorders, Part I, 143–54. Elsevier, 2023. http://dx.doi.org/10.1016/b978-0-323-85538-9.00008-0.
Der volle Inhalt der QuelleKritikos, Minos, Samuel E. Gandy, Jaymie R. Meliker, Benjamin J. Luft und Sean A. P. Clouston. „Acute versus Chronic Exposures to Inhaled Particulate Matter and Neurocognitive Dysfunction: Pathways to Alzheimer’s Disease or a Related Dementia“. In Advances in Alzheimer’s Disease. IOS Press, 2021. http://dx.doi.org/10.3233/aiad210028.
Der volle Inhalt der QuelleGupta, Nimisha, und Dr Farheen Waziri. „PROTEINOPATHIES: A REVIEW ON CURRENT SCENARIO AND THERAPEUTIC INTERVENTIONS“. In Futuristic Trends in Biotechnology Volume 3 Book 14, 144–60. Iterative International Publisher, Selfypage Developers Pvt Ltd, 2024. http://dx.doi.org/10.58532/v3bbbt14p2ch3.
Der volle Inhalt der QuelleDiederich, Nico J., und Christopher G. Goetz. „Parkinson’s Disease“. In The Evolutionary Roots of Human Brain Diseases, herausgegeben von Nico J. Diederich, Martin Brüne, Katrin Amunts und Christopher G. Goetz, 205–27. Oxford University PressNew York, 2024. http://dx.doi.org/10.1093/med/9780197676592.003.0010.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Proteinopathy"
Sarah, Fullam, Power Alan, Stack Jessica, Bermingham Niamh, McNamara Brian und Merwick Aine. „VCP multisystem proteinopathy: a ubiquitous culprit of neuronal degeneration“. In Association of British Neurologists: Annual Meeting Abstracts 2023. BMJ Publishing Group Ltd, 2023. http://dx.doi.org/10.1136/jnnp-2023-abn.229.
Der volle Inhalt der QuelleGwin, M. S., S. B. Voth, S. Subedi Paudel, N. Onanyan, A. Darby, C. M. Francis und T. Stevens. „Essential Role for Gamma Secretase Activating Protein (GSAP) in Infection-Elicited Endothelial Proteinopathy“. In American Thoracic Society 2020 International Conference, May 15-20, 2020 - Philadelphia, PA. American Thoracic Society, 2020. http://dx.doi.org/10.1164/ajrccm-conference.2020.201.1_meetingabstracts.a5275.
Der volle Inhalt der QuelleRoos, Raymond P., Katsuhisa Masaki, Yoshifumi Sonobe und Ghanashyam Ghadge. „TDP-43 PROTEINOPATHY IN THE PATHOGENESIS OF THEILER'S MURINE ENCEPHALOMYELITIS VIRUS INDUCED DISEASES“. In Viruses: Discovering Big in Small. TORUS PRESS, 2019. http://dx.doi.org/10.30826/viruses-2019-10.
Der volle Inhalt der QuelleAbakumets, V. Y., und K. Ya Bulanava. „THE INFLUENCE OF INSULIN FIBRILLATION“. In SAKHAROV READINGS 2021: ENVIRONMENTAL PROBLEMS OF THE XXI CENTURY. International Sakharov Environmental Institute of Belarusian State University, 2021. http://dx.doi.org/10.46646/sakh-2021-2-7-10.
Der volle Inhalt der QuelleLysikova, Ekaterina. „MOLECULAR MECHANISMS OF SUPPRESSION OF THE PROGRESSION OF FUS PROTEINOPATHY IN THE NERVOUS SYSTEM OF TRANSGENIC MICE“. In XVII INTERNATIONAL INTERDISCIPLINARY CONGRESS NEUROSCIENCE FOR MEDICINE AND PSYCHOLOGY. LCC MAKS Press, 2021. http://dx.doi.org/10.29003/m2209.sudak.ns2021-17/237-238.
Der volle Inhalt der QuelleGattas, Susannah, Mark Davis, Merrilee Needham, Emily Watson, Robert Henderson und Pamela McCombe. „3207 Case series of multisystem proteinopathy due to valosin-containing protein (VCP) gene variants: an inconsistent phenotype“. In ANZAN Annual Scientific Meeting 2024 Abstracts, A55.2—A55. BMJ Publishing Group Ltd, 2024. http://dx.doi.org/10.1136/bmjno-2024-anzan.156.
Der volle Inhalt der QuelleHalber, Matthew, Sabrina Bulancea und Simona Treidler. „Clinical and Electrophysiological Presentation of a Patient with Multisystem Proteinopathy Associated with Valosin-Containing Protein Mutation (P5-8.005)“. In 2023 Annual Meeting Abstracts. Lippincott Williams & Wilkins, 2023. http://dx.doi.org/10.1212/wnl.0000000000202694.
Der volle Inhalt der QuelleStork, Larissa Rosa, Lucca Stephani Ribeiro, Izabella Savergnini Deprá, Luísa D’Ávila Camargo und Maria Angélica Santos Novaes. „Tau protein and its role in Alzheimer’s disease physiopathology: a literature review“. In XIII Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1516-3180.132.
Der volle Inhalt der QuelleBarbosa, Mateus Gonçalves de Sena, Ghaspar Gomes de Oliveira Alves Francisco, Rafaela Luiza Vilela de Souza, João Marcos Alcântara de Souza und Nicollas Nunes Rabelo. „Chronic traumatic encephalopathy in military and sportsists: a factual problem?: a systematic review“. In XIII Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1516-3180.324.
Der volle Inhalt der QuellePedroza, Lucas Aleixo Leal, Francisco Agenor de Oliveira Neto, Antonio Marinho da Silva Neto,, Carlos Henrique Madeiros Castelletti und Priscila Gubert. „ANÁLISE IN SILICO DO POTENCIAL DE AGREGAÇÃO DE RESÍDUOS DA TDP 43 HUMANA“. In XXVII Semana de Biomedicina Inovação e Ciência. Editora IME, 2021. http://dx.doi.org/10.51161/9786588884119/17.
Der volle Inhalt der Quelle