Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Protéines et régions intrinsèquement désordonnées“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Protéines et régions intrinsèquement désordonnées" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Dissertationen zum Thema "Protéines et régions intrinsèquement désordonnées"
Bruley, Apolline. „Exploitation de signatures des repliements protéiques pour décrire le continuum ordre/désordre au sein des protéomes“. Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS474.
Der volle Inhalt der QuelleA significant fraction of the proteomes remains unannotated, leaving inaccessible a part of the functional repertoire of life, including molecular innovations with therapeutic or environmental value. Lack of functional annotation is partly due to the limitations of the current approaches in detecting hidden relationships, or to specific features such as disorder. The aim of my PhD thesis was to develop methodological approaches based on the structural signatures of folded domains, in order to further characterize the protein sequences with unknown function even in absence of evolutionary information. First, I developed a scoring system in order to estimate the foldability potential of an amino acid sequence, based on its density in hydrophobic clusters, which mainly correspond to regular secondary structures. I disentangled the continuum between order and disorder, covering various states from extended conformations (random coils) to molten globules and characterize cases of conditional order. Next, I combined this scoring system with the AlphaFold2 (AF2) 3D structure predictions available for 21 reference proteomes. A large fraction of the amino acids with very low AF2 model confidence are included in non-foldable segments, supporting the quality of AF2 as a predictor of disorder. However, within each proteome, long segments with very low AF2 model confidence also exhibit characteristics of soluble, folded domains. This suggests hidden order (conditional or unconditional), which is undetected by AF2 due to lack of evolutionary information, or unrecorded folding patterns. Finally, using these tools, I made a preliminary exploration of unannotated proteins or regions, identified through the development and application of a new annotation workflow. Even though these sequences are enriched in disorder, an important part of them showcases soluble globular-like characteristics. These would make good candidates for further experimental validation and characterization. Moreover, the analysis of experimentally validated de novo genes allowed me to contribute to the still-open debate on the structural features of proteins encoded by these genes, enriched in disorder and displaying a great diversity of structura
Tanty, Matthieu. „Développement de nouveaux outils et approches pour l’étude des protéines intrinsèquement désordonnées“. Strasbourg, 2011. http://www.theses.fr/2011STRA6104.
Der volle Inhalt der QuelleIntrinsically disordered proteins (IDP), ignored for a long time, turn out to be of biological interest. Indeed, although they lak of secondary structure, these proteins have an activity and are implicated in numerous protein-protein or protein-ligand interactions, in particular concerning neurodegenerative diseases. The study of IDP becomes a major issue in order to understand this part of biology, unknown until lately. Unfortunately, a vast majority of already developped tools in biology for folded proteins can not be applied to IDP because this tools are based on the presence of secondary structure. Though more and more research groups are interested in these proteins and in the ways of studying them, it is necessary to create or discover new means of analysing IDP. Three important analyse methods of IDP have been developped during this PhD. First, we will talk about the determination of the proteins’ fractal dimension in order to know their hydrodynamic behaviour. We have used a method dedicated to polymers that we have applied on polyproline peptides and on a proline-rich salivary IDP. Then, we will describe how to predict conformations from the protein chemical shifts. This discussion led to the development of two freely available softwares RamaDA/RamaDP. Finally, the last chapter will give an overview of the complete study of the interaction between a folded protein and its disordered partner, thanks to various expérimental data, the previous tools and a random conformation generator
Salmon, Loic. „Du Désordre Conformationnel des Protéines Structurées et Intrinsèquement Désordonnées par Résonance Magnétique Nucléaire“. Phd thesis, Université de Grenoble, 2010. http://tel.archives-ouvertes.fr/tel-00592552.
Der volle Inhalt der QuelleSchramm, Antoine. „Caractérisation de domaines d’oligomérisation et régions désordonnées de phosphoprotéine de paramyxovirus“. Thesis, Aix-Marseille, 2019. http://www.theses.fr/2019AIXM0381.
Der volle Inhalt der QuelleThe replication of paramyxoviruses is headed by the viral replicative machinery composed of three proteins : P, N and L.This complexe is a promising target for antiviral inhibitors. While P is known to be the centralrecruitment platform of the system, the interaction details of the P-L complex remain obscure. The ambition ofmy thesis project is to improve our knowledge on P interaction and dynamics. Thus, on one hand my goal is toimprove the P-L interaction mapping and on the other hand to contribute to a better structural description of P.Combining bio-physical and functional virology approaches, we identified P modules involved in the P-Lcomplex assembly. P XD is an essential P module for interaction as well as the P oligomeric state. theoligomerisation domain C-terminal part is essential for P chaperon function and crucial to drive L to an activeconformation. Finally, physico-chemical properties that correlate the oligomerisation domain stability is essentialfor transcription and replication processes. Moreover, based on biophysical measurements on P truncatedvariants, we propose a preliminary model of P C-terminal domain at very low resolution. Those results are a stepforward in narrowing down the replicative complex mechanistic. P mapping suggest that P and L interacttogether via different sites, suggesting this complex is rather dynamic. Especially, the oligomerisation domain sofar considered as an inert part of P, plays a crucial role in the replicative machinery
Jamecna, Denisa. „Une région intrinsèquement désordonnée dans OSBP contrôle la géometrie et la dynamique du site de contact membranaire“. Thesis, Université Côte d'Azur (ComUE), 2018. http://www.theses.fr/2018AZUR4229/document.
Der volle Inhalt der QuelleOxysterol binding protein (OSBP) is a lipid transfer protein that regulates cholesterol distribution in cell membranes. OSBP consists of a pleckstrin homology (PH) domain, two coiled-coils, a “two phenylalanines in acidic tract” (FFAT) motif and a C-terminal lipid binding OSBP-Related Domain (ORD). The PH domain recognizes PI(4)P and small G protein Arf1-GTP at the Golgi, whereas the FFAT motif interacts with the ER-resident protein VAP-A. By binding all these determinants simultaneously, OSBP creates membrane contact sites between ER and Golgi, allowing the counter-transport of cholesterol and PI(4)P by the ORD. OSBP also contains an intrinsically disordered ~80 aa long N-terminal sequence, composed mostly of glycine, proline and alanine. We demonstrate that the presence of disordered N-terminus increases the Stoke’s radius of OSBP truncated proteins and limits their density and saturation level on PI(4)P-containing membrane. The N-terminus also prevents the two PH domains of OSBP dimer to symmetrically tether two PI(4)P-containing (Golgi-like) liposomes, whereas protein lacking the disordered sequence promotes symmetrical liposome aggregation. Similarly, we observe a difference in OSBP membrane distribution on tethered giant unilamellar vesicles (GUVs), based on the presence/absence of N-terminus. Protein with disordered sequence is homogeneously distributed all over the GUV surface, whereas protein without N-terminus tends to accumulate at the interface between two PI(4)P-containing GUVs. This protein accumulation leads to local overcrowding, which is reflected by slow in-plane diffusion. The effect of N-terminus is also manifested in monomeric OSBPderived proteins that tether ER-like and Golgi-like membranes in the presence of VAP-A. Findings from our in vitro experiments are confirmed in living cells, where N-terminus controls the recruitment of OSBP on Golgi membranes, its motility and the on-and-off dynamics during lipid transfer cycles. Most OSBP-related proteins contain low complexity N-terminal sequences, suggesting a general effect
Lopez, Juan. „Étude de l’agrégation des protéines intrinsèquement désordonnées impliquées dans les maladies d’Alzheimer et de Parkinson“. Thesis, Lille 1, 2015. http://www.theses.fr/2015LIL10004/document.
Der volle Inhalt der QuelleDue to population aging, neurodegenerative diseases have become a major public health problem. In many cases, the amyloid deposits are composed of IDP (Intrinsically disordered protein) fibers, as Aß peptide in senile plaques and TAU in the PHF found in Alzheimer's disease, or Alpha synuclein in Lewy bodies found in Parkinson's disease. The accumulation of amyloid fibers is at the heart of the mechanisms of neurodegeneration. The understanding of the biological mechanisms that lead to the formation of the fibers may allow novel treatments and / or molecules that slow or stop the progression of these diseases. Firstly, in this thesis, we will develop new methodologies to study IDPs by NMR. In the second part, we will seek to better understand the mechanisms of aggregation of two IDPs involved in neurodegenerative diseases. The first case will be the aggregation of TAU protein in Alzheimer's disease and the second case will be the aggregation of Alpha synuclein in Parkinson's disease
Chan, Yao Chong Maud. „Structure et dynamique de protéines intrinsèquement désordonnées : Caractérisation par une approche combinant dynamique moléculaire avancée et SAXS“. Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS257.
Der volle Inhalt der QuelleThe PhD work will consist in exploring and characterizing the conformational ensemble of intrinsically disordered proteins (IDPs), by using several complementary methods, including enhanced molecular dynamics simulations and small angle X-ray scattering (SAXS). IDPs are proteins having one or several regions that lack stable secondary structures in the unbound state, but which can adopt various structured conformations to bind other proteins. In the case of three IDPs, the project aims to answer the question of whether these secondary structures formed at the protein-protein interfaces transiently pre-exist or not in the unbound state of solvated IDPs. If it is possible to identify and characterize these molecular recognition features (MoRFs) in the IDP unbound state, then the results of this work will subsequently help to determine the structures of protein complexes involving IDPs
Sahli, Line. „Contribution de la conformation et du désordre intrinsèque des gliadines de blé dans leur assemblage“. Thesis, Nantes, 2020. http://www.theses.fr/2020NANT4073.
Der volle Inhalt der QuelleIn recent years, the scientific community has been particularly interested in intrinsically disordered proteins (IDPs).These proteins are ubiquitous in the living world and represents more than a third of the human proteome. Their structural plasticity allows them to interact with various partners and to be involved in many biological processes. However, while many studies on human and plant IDPs have been done, few studies on plant storage IDPs have been done. The use of structural prediction tools has allowed us to highlight the existence of potentially disordered domains in wheat storage proteins. The role and behavior of these specific domains, during the accumulation of proteins in the seed, remain unclear. Their assembly and structural adaptation in dense protein bodies remain poorly understood. This thesis project aims to understand the role of predicted disordered domains in the assembly of wheat reserve proteins. The wheat γ-gliadin, which has both a disordered predicted N-terminal domain and an ordered predicted C-terminal domain, will constitute a protein model for all our research
Desravines, Danielle Claude. „Etudes structurales, fonctionnelles et d'inhibition de l'histone déacétylase 7 humaine“. Phd thesis, Université de Grenoble, 2010. http://tel.archives-ouvertes.fr/tel-00551909.
Der volle Inhalt der QuelleKhan, Shahid Nawaz. „Exploration par résonance magnétique de l'espace conformationnel et de la dynamique du facteur de transcription partiellement désordonné Engrailed-2“. Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066146/document.
Der volle Inhalt der QuelleIntrinsically Disordered Proteins (IDPs), which lack a stable rigid structure constitute a large and functionally important class of proteins. Nuclear Magnetic Resonance (NMR) is a well-established technique to characterize the structural and dynamical features of IDPs at atomic resolution. The broad conformational space of IDPs makes them challenging targets for structural biology to define their precise structural features and motions, the physical and chemical properties that underlie their biological functions. The present thesis establishes biophysical investigation of the disordered region of the transcription factor Engrailed-2 (13.5 kDa) primarily by NMR. After describing the protocol of expression and purification of the isotopically labeled protein, we present a novel approach to characterize the pico – nano second motions in IDPs using nuclear spin relaxation data at multiple fields. Paramagnetic Relaxation Enhancements (PREs) are used to identify transient long-range interactions between the disordered region and the folded homeodomain of Engrailed-2. Binding to DNA was studied by fluorescence anisotropy and highlights the role of the disordered region in the DNA binding. We used Electron Paramagnetic Resonance (EPR) to probe the potential interaction between the hydrophobic cluster (hexapeptide) in the disordered region and the homeodomain. The one-bond 1H-15N, Cα-Hα and Cα-C′ residual dipolar couplings (RDCs) measured for Engrailed-2 provide important constraints for the refinement of the conformational space of Engrailed_2. All these approaches provide valuable insights in understanding the structural, dynamical and functional properties of this IDP