Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Protein-RNA docking“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Protein-RNA docking" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Protein-RNA docking"
Arnautova, Yelena A., Ruben Abagyan und Maxim Totrov. „Protein-RNA Docking Using ICM“. Journal of Chemical Theory and Computation 14, Nr. 9 (17.07.2018): 4971–84. http://dx.doi.org/10.1021/acs.jctc.8b00293.
Der volle Inhalt der QuelleHe, Jiahua, Huanyu Tao und Sheng-You Huang. „Protein-ensemble–RNA docking by efficient consideration of protein flexibility through homology models“. Bioinformatics 35, Nr. 23 (14.05.2019): 4994–5002. http://dx.doi.org/10.1093/bioinformatics/btz388.
Der volle Inhalt der QuelleDelgado Blanco, Javier, Leandro G. Radusky, Damiano Cianferoni und Luis Serrano. „Protein-assisted RNA fragment docking (RnaX) for modeling RNA–protein interactions using ModelX“. Proceedings of the National Academy of Sciences 116, Nr. 49 (15.11.2019): 24568–73. http://dx.doi.org/10.1073/pnas.1910999116.
Der volle Inhalt der QuellePérez-Cano, Laura, Miguel Romero-Durana und Juan Fernández-Recio. „Structural and energy determinants in protein-RNA docking“. Methods 118-119 (April 2017): 163–70. http://dx.doi.org/10.1016/j.ymeth.2016.11.001.
Der volle Inhalt der QuelleZhang, Zhao, Lin Lu, Yue Zhang, Chun Hua Li, Cun Xin Wang, Xiao Yi Zhang und Jian Jun Tan. „A combinatorial scoring function for protein-RNA docking“. Proteins: Structure, Function, and Bioinformatics 85, Nr. 4 (09.02.2017): 741–52. http://dx.doi.org/10.1002/prot.25253.
Der volle Inhalt der QuelleZheng, Jinfang, Xu Hong, Juan Xie, Xiaoxue Tong und Shiyong Liu. „P3DOCK: a protein–RNA docking webserver based on template-based and template-free docking“. Bioinformatics 36, Nr. 1 (07.06.2019): 96–103. http://dx.doi.org/10.1093/bioinformatics/btz478.
Der volle Inhalt der QuelleSetny, Piotr, und Martin Zacharias. „A coarse-grained force field for Protein–RNA docking“. Nucleic Acids Research 39, Nr. 21 (16.08.2011): 9118–29. http://dx.doi.org/10.1093/nar/gkr636.
Der volle Inhalt der QuelleNithin, Chandran, Sunandan Mukherjee und Ranjit Prasad Bahadur. „A non-redundant protein-RNA docking benchmark version 2.0“. Proteins: Structure, Function, and Bioinformatics 85, Nr. 2 (02.12.2016): 256–67. http://dx.doi.org/10.1002/prot.25211.
Der volle Inhalt der QuelleWicaksono, Adhityo, und Arli Aditya Parikesit. „Molecular Docking and Dynamics of SARS-CoV-2 Programmed Ribosomal Frameshifting RNA and Ligands for RNA-Targeting Alkaloids Prospecting“. HAYATI Journal of Biosciences 30, Nr. 6 (24.07.2023): 1025–35. http://dx.doi.org/10.4308/hjb.30.6.1025-1035.
Der volle Inhalt der QuelleLi, Yaozong, Jie Shen, Xianqiang Sun, Weihua Li, Guixia Liu und Yun Tang. „Accuracy Assessment of Protein-Based Docking Programs against RNA Targets“. Journal of Chemical Information and Modeling 50, Nr. 6 (19.05.2010): 1134–46. http://dx.doi.org/10.1021/ci9004157.
Der volle Inhalt der QuelleDissertationen zum Thema "Protein-RNA docking"
Kravchenko, Anna. „Fragment-based modelling of protein-RNA complexes for protein design“. Electronic Thesis or Diss., Université de Lorraine, 2023. http://www.theses.fr/2023LORR0370.
Der volle Inhalt der QuelleProtein-RNA complexes play crucial roles in cell regulation. Predicting their 3D structure has applications in protein design and drug development. The ITN project RNAct aimed to combine experimental and computational methods to design new "RNA recognition motifs" (RRM) - protein domains interacting with single-stranded RNA (ssRNA) - for applications in synthetic biology and bioanalysis. Modelling protein-ssRNA complexes (docking) is an arduous task due to the flexibility of ssRNA, which lacks a proper structure in its free form. Traditional docking methods sample the relative positions (poses) of 2 molecular structures and score them to select the correct (near-native) ones. It is not directly applicable here due to the absence of free ssRNA structures, nor is deep learning due to the too low number of known structures for training. Fragment-based docking (FBD), the state-of-the-art approach for ssRNA, docks all possible conformations of RNA fragments onto a protein and assembles their best-scored poses combinatorially. ssRNA'TTRACT, our FBD method, uses the well-known ATTRACT docking software, with its coarse-grained representation that replaces atom groups by one bead. Yet the RNA-protein parameters of ATTRACT scoring function (ASF) are not ssRNA-specific and require optimisation. Additionally, RRM-specific features can be learned and used to guide the docking. With my colleague H. Dhondge, we have developed a data-driven FBD pipeline for RRM-ssRNA complexes, as an updated version of an existing strategy. RRMs have two aromatic amino acids (aa) in conserved positions, each stacking with a nucleotide of the bound ssRNA. H. Dhondge collected all known RRM-ssRNA structures with such stacking and clustered them to obtain a set of prototypes for the 3D coordinates of such interactions in RRM. I then set up a docking pipeline with as input the RRM and RNA sequences and the identification of the stacked nucleotides. The pipeline retrieves the RRM structure from AlphaFoldDB, identifies possible 3D positions of the stacked nucleotides and runs ssRNA'TTRACT with maximal distance restraints toward each position. In parallel, we addressed the weakness of ASF for ssRNA by deriving HIPPO (HIstogram-based Pseudo-POtential), a new scoring potential for ATTRACT poses of ssRNA on RRM, based on the frequency of bead-bead distances in near-native versus wrong poses. It combines 4 distinct parameter sets (four Η) into a consensus scoring, to better account for the diverse RRM-ssRNA binding modes. Tested in a leave-one-out approach, HIPPO reaches a 3-fold enrichment of near-natives in 20% top-scored poses for ½ of the ssRNA fragments, versus ¼ with ASF. It even reaches a 4-fold enrichment for ⅓ of the fragments, versus 7% of the fragments with ASF. Surprisingly, HIPPO performed better than ASF also on a benchmark of non-RRM proteins, while trained only on RRMs. Most FBD approaches encounter inherent scoring issues, probably due to some fragments binding more specifically/strongly than others. To address this point, we examined the best-scored fragment per complex and found that HIPPO consistently selects more near-natives than ASF for this fragment. This inspired an incremental docking approach: the top-ranked poses of one fragment are used as a starting point to build a full RNA chain incrementally. This strategy eliminates the need for known conserved contacts, which have been required so far to obtain accurate models, making it generalizable to non-RRM proteins. Future research aims to identify the best-performing Η for each fragment, potentially using (deep) machine learning. Our workflow to derive scoring parameters is in principle applicable to any protein/ligand type and we plan to expand it to other RNA-binding protein domains, as well as ssDNA and long peptides
Patschull, Lafitte-Laplace Anathe Olivia Maria. „In silico ligand fitting/docking, computational analysis and biochemical/biophysical validation for protein-RNA recognition and for rational drug design in diseases“. Thesis, Birkbeck (University of London), 2014. http://bbktheses.da.ulcc.ac.uk/84/.
Der volle Inhalt der QuelleChevrollier, Nicolas. „Développement et application d’une approche de docking par fragments pour modéliser les interactions entre protéines et ARN simple-brin“. Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS106/document.
Der volle Inhalt der QuelleRNA-protein interactions mediate numerous fundamental cellular processes. Atomic scale details of these interactions shed light on their functions but can also allow the rational design of ligands that could modulate them. NMR and X-ray crystallography are the 2 main techniques used to resolve 3D highresolution structures between two interacting molecules. Docking approaches can also be utilized to give models as an alternative. However, the application of these approaches to RNA-protein complexes is hampered by an issue. RNA-protein interactions often relies on the specific recognition of a short singlestranded RNA (ssRNA) sequence by the protein. The inherent flexibility of the ssRNA segment would impose, in a classical docking approach, to explore their resulting large conformation space which is not computationally reliable. The goal of this project is to overcome this barrier by using a fragment-based docking approach. This approach developed from some of the most represented RNA-binding domains showed excellent results in the prediction of the ssRNA-protein binding mode from the RNA sequence and also a great potential to predict preferential RNA binding sequences
Zhang, Jin. „Macromolecular Interactions in West Nile Virus RNA-TIAR Protein Complexes and of Membrane Associated Kv Channel Peptides“. Digital Archive @ GSU, 2013. http://digitalarchive.gsu.edu/chemistry_diss/81.
Der volle Inhalt der QuelleBuchteile zum Thema "Protein-RNA docking"
Madan, Bharat, Joanna M. Kasprzak, Irina Tuszynska, Marcin Magnus, Krzysztof Szczepaniak, Wayne K. Dawson und Janusz M. Bujnicki. „Modeling of Protein–RNA Complex Structures Using Computational Docking Methods“. In Methods in Molecular Biology, 353–72. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3569-7_21.
Der volle Inhalt der QuelleGuo, Yun, Xiaoyong Pan und Hong-Bin Shen. „Recent progress of methodology development for protein–RNA docking“. In Protein Interactions, 271–95. WORLD SCIENTIFIC, 2020. http://dx.doi.org/10.1142/9789811211874_0011.
Der volle Inhalt der QuelleUmare, Mohit, Fai A. Alkathiri und Rupesh Chikhale. „Development of Nucleic Acid Targeting Molecules: Molecular Docking Approaches and Recent Advances“. In Biomedical Engineering. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.107349.
Der volle Inhalt der QuellePÉREZ-CANO, LAURA, ALBERT SOLERNOU, CARLES PONS und JUAN FERNÁNDEZ-RECIO. „STRUCTURAL PREDICTION OF PROTEIN-RNA INTERACTION BY COMPUTATIONAL DOCKING WITH PROPENSITY-BASED STATISTICAL POTENTIALS“. In Biocomputing 2010, 293–301. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789814295291_0031.
Der volle Inhalt der QuelleMadala, Sanjay, S. S. V. Kiran K und Burra V. L. S. Prasad. „In Silico Design of Natural Compound-Derived Novel Inhibitors Against RdRP OF SARS-CoV-2“. In Current Trends in Drug Discovery, Development and Delivery (CTD4-2022), 142–54. Royal Society of Chemistry, 2023. http://dx.doi.org/10.1039/9781837671090-00142.
Der volle Inhalt der QuelleOxford, John, Paul Kellam und Leslie Collier. „General properties of viruses“. In Human Virology. Oxford University Press, 2016. http://dx.doi.org/10.1093/hesc/9780198714682.003.0002.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Protein-RNA docking"
Kralj, Sebastjan, Milan Hodošček, Marko Jukić und Urban Bren. „A comprehensive in silico protocol for fast automated mutagenesis and binding affinity scoring of protein-ligand complexes“. In 2nd International Conference on Chemo and Bioinformatics. Institute for Information Technologies, University of Kragujevac, 2023. http://dx.doi.org/10.46793/iccbi23.674k.
Der volle Inhalt der QuelleSan, Avdar, Anjana Saxena und Shaneen Singh. „Abstract 844: RNA binding domains of nucleolin exhibit specificity in driving nucleolin-miRNA interactions: Anin silicomodeling and RNA-protein docking study“. In Proceedings: AACR Annual Meeting 2020; April 27-28, 2020 and June 22-24, 2020; Philadelphia, PA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.am2020-844.
Der volle Inhalt der Quelle