Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Protein N-terminal modifications“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Protein N-terminal modifications" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Protein N-terminal modifications"
Lai, Zon W., Agnese Petrera und Oliver Schilling. „Protein amino-terminal modifications and proteomic approaches for N-terminal profiling“. Current Opinion in Chemical Biology 24 (Februar 2015): 71–79. http://dx.doi.org/10.1016/j.cbpa.2014.10.026.
Der volle Inhalt der QuelleVoronina, A. I., Yu V. Miroshnichenko und V. S. Skvortsov. „Bioinformatic identification of proteins with altered PTM levels in a mouse line established to study the mechanisms of the development of fibromuscular dysplasia“. Biomeditsinskaya Khimiya 70, Nr. 4 (2024): 248–55. http://dx.doi.org/10.18097/pbmc20247004248.
Der volle Inhalt der QuelleYu, Guann-Yi, Ki-Jeong Lee, Lu Gao und Michael M. C. Lai. „Palmitoylation and Polymerization of Hepatitis C Virus NS4B Protein“. Journal of Virology 80, Nr. 12 (15.06.2006): 6013–23. http://dx.doi.org/10.1128/jvi.00053-06.
Der volle Inhalt der QuelleDissmeyer, Nico. „Conditional Protein Function via N-Degron Pathway–Mediated Proteostasis in Stress Physiology“. Annual Review of Plant Biology 70, Nr. 1 (29.04.2019): 83–117. http://dx.doi.org/10.1146/annurev-arplant-050718-095937.
Der volle Inhalt der QuelleMeinnel, Thierry, und Carmela Giglione. „Tools for analyzing and predicting N-terminal protein modifications“. PROTEOMICS 8, Nr. 4 (Februar 2008): 626–49. http://dx.doi.org/10.1002/pmic.200700592.
Der volle Inhalt der QuelleRose, K., P. O. Regamey, R. Anderegg, T. N. C. Wells und A. E. I. Proudfoot. „Human interleukin-5 expressed in Escherichia coli has N-terminal modifications“. Biochemical Journal 286, Nr. 3 (15.09.1992): 825–28. http://dx.doi.org/10.1042/bj2860825.
Der volle Inhalt der QuelleLee, Seon Hwa, und Tomoyuki Oe. „Oxidative stress-mediated N-terminal protein modifications and MS-based approaches for N-terminal proteomics“. Drug Metabolism and Pharmacokinetics 31, Nr. 1 (Februar 2016): 27–34. http://dx.doi.org/10.1016/j.dmpk.2015.12.002.
Der volle Inhalt der QuelleOuidir, Tassadit, Frédérique Jarnier, Pascal Cosette, Thierry Jouenne und Julie Hardouin. „Characterization of N-terminal protein modifications in Pseudomonas aeruginosa PA14“. Journal of Proteomics 114 (Januar 2015): 214–25. http://dx.doi.org/10.1016/j.jprot.2014.11.006.
Der volle Inhalt der QuelleGiglione, Carmela, Sonia Fieulaine und Thierry Meinnel. „N-terminal protein modifications: Bringing back into play the ribosome“. Biochimie 114 (Juli 2015): 134–46. http://dx.doi.org/10.1016/j.biochi.2014.11.008.
Der volle Inhalt der QuelleVan Damme, Petra. „Charting the N-Terminal Acetylome: A Comprehensive Map of Human NatA Substrates“. International Journal of Molecular Sciences 22, Nr. 19 (02.10.2021): 10692. http://dx.doi.org/10.3390/ijms221910692.
Der volle Inhalt der QuelleDissertationen zum Thema "Protein N-terminal modifications"
Xie, Dong. „Uncovering the maturation pathway of plant Rubisco“. Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASL080.
Der volle Inhalt der QuelleDuring photosynthesis, atmospheric carbon dioxide (CO₂), the prevalent anthropogenic greenhouse gas, is assimilated into carbohydrates by the enzyme Rubisco, the most abundant protein on earth. The large subunit of Rubisco (RbcL) undergoes a unique maturation pathway leading to unusual N-terminal modifications. This mechanism is conserved in plants, resulting in an N-terminal acetylated proline at position 3. Unravelling the maturation pathway of Rubisco is therefore a key challenge for CO₂ fixation in the context of climate change and global warming. My PhD project aimed at discovering the machinery leading to Pro3 acetylation and unmasking the associated functional relevance. First, two open reading frames (ORFs) in Arabidopsis thaliana were identified as putative candidates that might contribute to the proteolytic part of this process. The functions of two conserved aminopeptidases were challenged in vitro assay and in knockout Arabidopsis thaliana lines. I showed that one protease is specifically in charge of residue 2 release, while the second does not contribute to N-terminal protein maturation in the plastid. In addition, my data demonstrates that Pro3 acetylation is catalysed by only one acetyltransferase isoform occurring in the plastid. Together, the unique N-terminal modification machinery involved in RbcL processing relies on two enzymes that are dedicated to RbcL processing. I could reconstitute the maturation pathway in E. coli. Finally, I have investigated how the N-terminal modifications of RbcL affect Rubisco assembly, activity, and accumulation
Connor, Rebecca E. Barton Jacqueline K. Tirrell David A. „N-terminal modification and codon reassignment with non-canonical amino acids in proteins /“. Diss., Pasadena, Calif. : California Institute of Technology, 2008. http://resolver.caltech.edu/CaltechETD:etd-03052008-065324.
Der volle Inhalt der QuelleLiu, Li. „Purification and characterization of a protein palmitoyltransferase that acts on H-Ras protein and on a C-terminal N-Ras peptide /“. Thesis, Connect to this title online; UW restricted, 1996. http://hdl.handle.net/1773/8664.
Der volle Inhalt der QuelleLavecchia, Francesco. „Integrative Approaches to Decode the Co-translational Role of the Phage Vp16 Peptide Deformylase and how it Compromises Host Viability“. Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS004/document.
Der volle Inhalt der QuelleN-terminal Methionine Excision (NME) is the first occurring N-terminal Protein Modification (NPMs). Peptide deformylases (PDFs) are the enzymes involved in this essential and conserved co-translational process. PDFs remove the formyl group bound to the iMet present at the beginning of all prokaryotic nascent chains. PDFs act on the nascent chain at the level of the ribosome exit tunnel, a central hub for a number of Ribosome-associated Protein Biogenesis factors (RPBs) involved not only on NPMs but also in protein folding and translocation. Deformylation involves 95% of bacterial proteome and it is suggested to directly contribute to protein stability. Recent high-throughput sequencing of thousands of genomes has strongly contributed to revolutionizing our perception of the distribution of PDFs among kingdoms, revealing putative PDFs in all organisms, including viruses. In particular, studies of viruses within oceanic microbial samples retrieved unusual PDFs genes as the most abundant family in most of phage genomes. Sequence comparisons reveal that viral PDFs show high conservation in the three motifs that build the catalytic site; however, viral PDFs do not display a C-terminal extension when compared to the different active PDFs from other organisms. Since this C-terminal extension was shown to be important for PDF-ribosome binding and is required for the in vivo deformylase activity of E. coli PDF, it was unclear whether the discovered phage PDFs might support a classical deformylase activity. Thus, the discovery of these viral PDFs raises a number of questions among which: a) Have these viral PDFs a classical deformylase activity? b) Are these PDFs able to still bind to the ribosomes? c) Why so many viruses carry a peptide deformylase? In this context, the objective of my thesis was to undertake the characterization of these marine phage PDFs and particularly Vp16 PDF derived from the bacteriophages originally isolated from Vibrio Parahaemolyticus strain 16. Our studies reveal that phage PDFs display deformylase activity both in vitro and in vivo with a substrate specificity similar to that of other bacterial PDFs. On the other hand, we showed by biochemical and structural data, combined with site-directed mutagenesis analyses, that Vp16 PDF significantly differs from previously characterized PDFs in terms of their properties, which can be related to its few uncommon peculiarities. Interestingly, expression of Vp16 PDF in E. coli strains, even at low concentrations, exhibited a severe bactericidal effect at temperature lower than 37 °C. This bactericidal effect of Vp16 PDF was independent of the presence of the bacterial endogenous PDF and strictly relied on its PDF activity. Characterization of this phenotype revealed that Vp16 PDF-induced lethality showed a strong genetic link with genes encoding cellular factors involved in nascent pre-secretory protein targeting and folding (Trigger Factor and Sec). Differently from bacterial PDF, I could show that Vp16 PDF has strong affinity for ribosomes with a specific nascent chain, interacting with a ribosomal region overlapping that of factors involved in pre-secretory protein targeting. A competition between Vp16 PDF and these RPBs at the level of the ribosome may contribute to the host lysis, revealing a possible new unrecognized mechanism developed by viruses to control host viability
Kshetri, Man B. „N-TERMINAL DOMAIN OF rRNA METHYLTRANSFERASE ENZYME RsmC IS IMPORTANT FOR ITS BINDING TO RNA AND RNA CHAPERON ACTIVITY“. Kent State University Honors College / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=ksuhonors1621007414429417.
Der volle Inhalt der QuelleEl, Barbry Houssam. „Découverte du rôle crucial du résidu en position 2 des séquences MTS d’adressage mitochondrial“. Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS035.
Der volle Inhalt der QuelleMitochondria are complex organelles involving a thousand proteins, most of which are encoded in the nuclear genome. Their biogenesis has required the evolutionary development of efficient protein addressing and import systems, and failures of these systems are associated with serious pathologies, neuropathies, cardiovascular disorders, myopathies, neurodegenerative diseases and cancers.Many mitochondrial proteins have an N-terminal addressing sequence called MTS (Mitochondrial Targeting Sequence) which forms an amphiphilic alpha helix essential for their mitochondrial import. However, the sequence of the various MTSs is highly variable and their critical characteristics are not yet well understood. The starting point of my thesis was the discovery in yeast of an overrepresentation of 4 hydrophobic amino acids (F, L, I, W) at position 2 of the MTSs sequences. During my thesis, I was able to confirm the critical role of the nature of the residue in position 2 of the MTSs through directed mutagenesis experiments. Indeed, thanks to the development of an innovative system for screening import defects based on the functional rescue of the toxicity of a mitochondrial protein, I was able to observe that only residues overrepresented at position 2 of mitochondrial proteins allowed efficient import. My work has thus demonstrated the existence of strong evolutionary constraints at position 2 of MTSs, the understanding of which could ultimately be useful for optimising the mitochondrial addressing of therapeutic proteins in patients suffering from mitochondrial diseases
Zákoucká, Eva. „Proteomická a bioinformatická charakterizace N-terminálních sekvencí proteinů modifikovaných po importu do hydrogenosomu Trichomonas vaginalis“. Master's thesis, 2014. http://www.nusl.cz/ntk/nusl-337356.
Der volle Inhalt der QuelleConnor, Rebecca Elizabeth. „N-Terminal Modification and Codon Reassignment with Non-Canonical Amino Acids in Proteins“. Thesis, 2008. https://thesis.library.caltech.edu/878/8/ConnorTOC.pdf.
Der volle Inhalt der QuelleBücher zum Thema "Protein N-terminal modifications"
Wetzel, Ronald, und Rakesh Mishra. Structural Biology. Oxford University Press, 2014. http://dx.doi.org/10.1093/med/9780199929146.003.0012.
Der volle Inhalt der QuelleBuchteile zum Thema "Protein N-terminal modifications"
Ciechanover, Aaron. „N-terminal Ubiquitination: No Longer Such a Rare Modification“. In Protein Degradation, 10–20. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/352760586x.ch2.
Der volle Inhalt der QuelleAcikalin Coskun, Kubra, Nazlıcan Yurekli, Elif Cansu Abay, Merve Tutar, Mervenur Al und Yusuf Tutar. „Structure- and Design-Based Difficulties in Recombinant Protein Purification in Bacterial Expression“. In Protein Detection [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.103958.
Der volle Inhalt der QuelleArnesen, Thomas. „Preface – The impact of protein N- and C-terminal modifications“. In Methods in Enzymology, xv—xviii. Elsevier, 2023. http://dx.doi.org/10.1016/s0076-6879(23)00248-3.
Der volle Inhalt der QuelleBarlowe, Charles, Randy Schekman und Aki Nakano. „Sarlp“. In Guidebook to the Sinall GTPases, 450–51. Oxford University PressOxford, 1995. http://dx.doi.org/10.1093/oso/9780198599456.003.0150.
Der volle Inhalt der QuelleLahnstein, Jelle, Shanny L. Dyer, Neil H. Goss, Mark Duncan und Raymond S. Norton. „N-TERMINAL MODIFICATION OF MALARIAL ANTIGENS FROM E. coli“. In Techniques in Protein Chemistry IV, 83–90. Elsevier, 1993. http://dx.doi.org/10.1016/b978-0-12-058757-5.50014-7.
Der volle Inhalt der QuelleWu, Pengguang, und Ludwig Brand. „[15] N-terminal modification of proteins for fluorescence measurements“. In Methods in Enzymology, 321–30. Elsevier, 1997. http://dx.doi.org/10.1016/s0076-6879(97)78017-0.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Protein N-terminal modifications"
Ehrlich, Marcelo, John S. Parker und Terence S. Dermody. Development of a Plasmid-Based Reverse Genetics System for the Bluetongue and Epizootic Hemorrhagic Disease Viruses to Allow a Comparative Characterization of the Function of the NS3 Viroporin in Viral Egress. United States Department of Agriculture, September 2013. http://dx.doi.org/10.32747/2013.7699840.bard.
Der volle Inhalt der Quelle