Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Protein movements“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Protein movements" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Protein movements"
Cox, Sarah, Elzbieta Radzio-Andzelm und Susan Serota Taylor. „Domain movements in protein kinases“. Current Opinion in Structural Biology 4, Nr. 6 (Januar 1994): 893–901. http://dx.doi.org/10.1016/0959-440x(94)90272-0.
Der volle Inhalt der QuelleKuffel, Anna, und Jan Zielkiewicz. „Water-mediated long-range interactions between the internal vibrations of remote proteins“. Physical Chemistry Chemical Physics 17, Nr. 10 (2015): 6728–33. http://dx.doi.org/10.1039/c5cp00090d.
Der volle Inhalt der QuelleMessant, Marine, Anja Krieger-Liszkay und Ginga Shimakawa. „Dynamic Changes in Protein-Membrane Association for Regulating Photosynthetic Electron Transport“. Cells 10, Nr. 5 (16.05.2021): 1216. http://dx.doi.org/10.3390/cells10051216.
Der volle Inhalt der QuellePlatani, Melpomeni, Ilya Goldberg, Jason R. Swedlow und Angus I. Lamond. „In Vivo Analysis of Cajal Body Movement, Separation, and Joining in Live Human Cells“. Journal of Cell Biology 151, Nr. 7 (25.12.2000): 1561–74. http://dx.doi.org/10.1083/jcb.151.7.1561.
Der volle Inhalt der QuelleChudakov, Dmitriy M., Sergey Lukyanov und Konstantin A. Lukyanov. „Tracking intracellular protein movements using photoswitchable fluorescent proteins PS-CFP2 and Dendra2“. Nature Protocols 2, Nr. 8 (August 2007): 2024–32. http://dx.doi.org/10.1038/nprot.2007.291.
Der volle Inhalt der QuelleKuznetsov, A. V., I. Yu Grishin und D. N. Vtyurina. „Spatial Models of Piezoproteins and Networks of Protein-Protein Interactions in Trichoplax Animals (Placozoa)“. Молекулярная биология 57, Nr. 5 (01.09.2023): 895–97. http://dx.doi.org/10.31857/s0026898423050075.
Der volle Inhalt der QuelleRoberts, G. C. K. „Folding and unfolding for binding: large-scale protein dynamics in protein–protein interactions“. Biochemical Society Transactions 34, Nr. 5 (01.10.2006): 971–74. http://dx.doi.org/10.1042/bst0340971.
Der volle Inhalt der QuelleWako, Hiroshi, und Shigeru Endo. „ProMode-Oligomer: Database of Normal Mode Analysis in Dihedral Angle Space for a Full-Atom System of Oligomeric Proteins“. Open Bioinformatics Journal 6, Nr. 1 (21.02.2012): 9–19. http://dx.doi.org/10.2174/1875036201206010009.
Der volle Inhalt der QuelleSuetsugu, Noriyuki, Atsushi Takemiya, Sam-Geun Kong, Takeshi Higa, Aino Komatsu, Ken-ichiro Shimazaki, Takayuki Kohchi und Masamitsu Wada. „RPT2/NCH1 subfamily of NPH3-like proteins is essential for the chloroplast accumulation response in land plants“. Proceedings of the National Academy of Sciences 113, Nr. 37 (30.08.2016): 10424–29. http://dx.doi.org/10.1073/pnas.1602151113.
Der volle Inhalt der QuelleHollenbeck, P. J., und D. Bray. „Rapidly transported organelles containing membrane and cytoskeletal components: their relation to axonal growth.“ Journal of Cell Biology 105, Nr. 6 (01.12.1987): 2827–35. http://dx.doi.org/10.1083/jcb.105.6.2827.
Der volle Inhalt der QuelleDissertationen zum Thema "Protein movements"
Taylor, Daniel. „Classification of protein domain movements using dynamic contact graphs“. Thesis, University of East Anglia, 2014. https://ueaeprints.uea.ac.uk/53442/.
Der volle Inhalt der QuelleQi, Guoying. „A comprehensive and non-redundant database of protein domain movements“. Thesis, University of East Anglia, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.426345.
Der volle Inhalt der QuelleLin, Jun. „Structures of Poliovirus and Antibody Complexes Reveal Movements of the Capsid Protein VP1 During Cell Entry“. BYU ScholarsArchive, 2011. https://scholarsarchive.byu.edu/etd/3047.
Der volle Inhalt der QuelleNandadasa, Sumeda A. „Cadherin mediated F-actin assembly and the regulation of morphogenetic movements during Xenopus laevis development“. University of Cincinnati / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1276953030.
Der volle Inhalt der QuelleHedberg, Linda. „The birth and growth of the protein folding nucleus : Studies of protein folding focused on critical contacts, topology and ionic interactions“. Doctoral thesis, Stockholm University, Department of Biochemistry and Biophysics, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-8146.
Der volle Inhalt der QuelleProteins are among the most complex molecules in the cell and they play a major role in life itself. The complexity is not restricted to just structure and function, but also embraces the protein folding reaction. Within the field of protein folding, the focus of this thesis is on the features of the folding transition state in terms of growing contacts, common nucleation motifs and the contribution of charged residues to stability and folding kinetics.
During the resent decade, the importance of a certain residue in structure formation has been deduced from Φ-value analysis. As a complement to Φ-value analysis, I present how scatter in a Hammond plot is related to site-specific information of contact formation, Φ´(βTS), and this new formalism was experimentally tested on the protein L23. The results show that the contacts with highest Φ growth at the barrier top were distributed like a second layer outside the folding nucleus. This contact layer is the critical interactions needed to be formed to overcome the entropic barrier.
Furthermore, the nature of the folding nucleus has been shown to be very similar among proteins with homologous structures and, in the split β-α-β family the proteins favour a two-strand-helix motif. Here I show that the two-strand-helix motif is also present in the ribosomal protein S6 from A. aeolicus even though the nucleation and core composition of this protein differ from other related structure-homologues.
In contrast to nucleation and contact growth, which are events driven by the hydrophobic effect, my most recent work is focused on electrostatic effects. By pH titration and protein engineering the charge content of S6 from T. thermophilus was altered and the results show that the charged groups at the protein surface might not be crucial for protein stability but, indeed, have impact on folding kinetics. Furthermore, by site-specific removal of all acidic groups the entire pH dependence of protein stability was depleted.
Lombard, Valentin. „Geometric deep manifold learning combined with natural language processing for protein movies“. Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS379.
Der volle Inhalt der QuelleProteins play a central role in biological processes, and understanding how they deform and move is essential to elucidating their functional mechanisms. Despite recent advances in high-throughput technologies, which have broadened our knowledge of protein structures, accurate prediction of their various conformational states and motions remains a major challenge. We present two complementary approaches to address the challenge of understanding and predicting the full range of protein conformational variability. The first approach, Dimensionality Analysis for protein Conformational Exploration (DANCE) for a systematic and comprehensive description of protein families conformational variability. DANCE accommodates both experimental and predicted structures. It is suitable for analyzing anything from single proteins to superfamilies. Employing it, we clustered all experimentally resolved protein structures available in the Protein Data Bank into conformational collections and characterized them as sets of linear motions. The resource facilitates access and exploitation of the multiple states adopted by a protein and its homologs. Beyond descriptive analysis, we assessed classical dimensionality reduction techniques for sampling unseen states on a representative benchmark. This work improves our understanding of how proteins deform to perform their functions and opens ways to a standardized evaluation of methods designed to sample and generate protein conformations. The second approach relies on deep learning to predict continuous representations of protein motion directly from sequences, without the need for structural data. This model, SeaMoon, uses protein language model (pLM) embeddings as inputs to a lightweight convolutional neural network with around 1 million trainable parameters. SeaMoon achieves a success rate of 40% when evaluated against around 1,000 collections of experimental conformations, capturing movements beyond the reach of traditional methods such as normal mode analysis, which relies solely on 3D geometry. In addition, SeaMoon generalizes to proteins that have no detectable sequence similarity with its training set and can be easily retrained with updated pLMs. These two approaches offer a unified framework for advancing our understanding of protein dynamics. DANCE provides a detailed exploration of protein movements based on structural data, while SeaMoon demonstrates the potential of sequence-based deep learning models to capture complex movements without relying on explicit structural information. Together, they pave the way for a more comprehensive understanding of protein conformational variability and its role in biological function
Liu, Huanting. „Molecular biology of maize streak virus movement in maize“. Thesis, University of East Anglia, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.361478.
Der volle Inhalt der QuelleLai, Yun-Ju. „Role of TRIP6 in LPA-induced cell migration“. Thesis, Birmingham, Ala. : University of Alabama at Birmingham, 2007. https://www.mhsl.uab.edu/dt/2009r/lai.pdf.
Der volle Inhalt der QuelleHu, Xiaohua. „Actin polymerization dynamics at the leading edge“. Diss., Virginia Tech, 2012. http://hdl.handle.net/10919/39940.
Der volle Inhalt der QuellePh. D.
Schmidt, von Braun Serena. „Chup1 - a chloroplast movement protein and its interactions“. Diss., lmu, 2008. http://nbn-resolving.de/urn:nbn:de:bvb:19-87456.
Der volle Inhalt der QuelleBücher zum Thema "Protein movements"
Palmieri, Franco. Sommossa: La piazza contro la democrazia. Milano: Bietti, 2011.
Den vollen Inhalt der Quelle finden1968-, Podobnik Bruce, und Reifer Thomas Ehrlich, Hrsg. Transforming globalization: Challenges and opportunities in the post 9/11 era. Chicago, IL: Haymarket Books, 2009.
Den vollen Inhalt der Quelle finden1968-, Podobnik Bruce, und Reifer Thomas Ehrlich, Hrsg. Transforming globalization: Challenges and opportunities in the post 9/11 era. Chicago, IL: Haymarket Books, 2009.
Den vollen Inhalt der Quelle findenSharma, Mukul. No borders: Journeys of an Indian journalist. Delhi: Daanish Books, 2006.
Den vollen Inhalt der Quelle findenFoti, Alex. Anarchy in the EU: Movimenti pink, black, green in Europa e grande recessione. Milano: Agenzia X, 2008.
Den vollen Inhalt der Quelle findenAgenturschluss. Schwarzbuch Hartz IV: Sozialer Angriff und Widerstand - eine Zwischenbilanz. Berlin: Assoziation A, 2006.
Den vollen Inhalt der Quelle findenPorta, Donatella Della. La protesta e il controllo: Movimenti e forze dell'ordine nell'era della globalizzazione. Milano: Consorzio Altra economia, 2004.
Den vollen Inhalt der Quelle findenVickers, Adrian. Explaining the anti-globalisation movement. Wollongong, NSW: University of Wollongong, 2001.
Den vollen Inhalt der Quelle findenCurcio, Anna. La paura dei movimenti: Evento e genealogia di una mobilitazione. Soveria Mannelli [Italy]: Rubbettino, 2006.
Den vollen Inhalt der Quelle findenWhitney Biennial (2014 : New York, N.Y.), Hrsg. The beating of our hearts. Los Angeles, California: Semiotext(e), 2014.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Protein movements"
Nilson, Sarah E., und Wei Zhang. „Heterotrimeric G Protein Regulation of Stomatal Movements“. In Integrated G Proteins Signaling in Plants, 177–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03524-1_10.
Der volle Inhalt der QuelleWaksman, A. „Environmentally Induced Protein Movements and Membrane Reorganization: A Means for Inter and Intracellular Communication ?“ In The Cell Surface in Signal Transduction, 67–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-72910-2_5.
Der volle Inhalt der QuelleMartin, Greg. „Religious movements and social movements“. In Social Movements and Protest Politics, 172–201. 2. Aufl. London: Routledge, 2023. http://dx.doi.org/10.4324/9780367821760-7.
Der volle Inhalt der QuelleLee, Jung-Youn. „Phosphorylation of Movement Proteins by the Plasmodesmal-Associated Protein Kinase“. In Plant Virology Protocols, 625–39. Totowa, NJ: Humana Press, 2008. http://dx.doi.org/10.1007/978-1-59745-102-4_42.
Der volle Inhalt der QuelleMartin, Greg. „Media and movements“. In Social Movements and Protest Politics, 248–83. 2. Aufl. London: Routledge, 2023. http://dx.doi.org/10.4324/9780367821760-9.
Der volle Inhalt der QuelleEklundh, Emmy. „Understanding Movement Unity“. In Emotions, Protest, Democracy, 121–54. Abingdon, Oxon ; New York, NY : Routledge, 2019. |: Routledge, 2019. http://dx.doi.org/10.4324/9781351205719-6.
Der volle Inhalt der QuelleBuxbaum, Engelbert. „Motor Proteins and Movement“. In Fundamentals of Protein Structure and Function, 305–22. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19920-7_13.
Der volle Inhalt der QuelleMandal, Bipul. „Socio-Religious Movement II The Kshatriyaization Movement“. In Protest, Upliftment and Identity, 153–97. London: Routledge, 2022. http://dx.doi.org/10.4324/9781003353386-5.
Der volle Inhalt der QuelleMandal, Bipul. „Socio-Religious Movement I The Matua Movement“. In Protest, Upliftment and Identity, 114–52. London: Routledge, 2022. http://dx.doi.org/10.4324/9781003353386-4.
Der volle Inhalt der QuelleEklundh, Emmy. „From Movement to Party“. In Emotions, Protest, Democracy, 195–216. Abingdon, Oxon ; New York, NY : Routledge, 2019. |: Routledge, 2019. http://dx.doi.org/10.4324/9781351205719-9.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Protein movements"
Todorov, Stoyo, Kina Kutsarova-Dimitorova und Yonko Paskalev. „ENVIRONMENTAL IMPACT OF THE MODERNIZATION OF THE SOFIA - PLOVDIV RAILWAY LINE“. In 24th SGEM International Multidisciplinary Scientific GeoConference 2024, 775–82. STEF92 Technology, 2024. https://doi.org/10.5593/sgem2024/5.1/s23.95.
Der volle Inhalt der QuelleVinnari, E., und M. Laine. „15. Social movements and ontological politics: enacting farmed animals“. In 6th EAAP International Symposium on Energy and Protein Metabolism and Nutrition. The Netherlands: Wageningen Academic Publishers, 2019. http://dx.doi.org/10.3920/978-90-8686-892-6_15.
Der volle Inhalt der QuelleSheetz, M. P., J. Gelles, E. R. Steuer, B. J. Schnapp, J. Dubinska, H. Qian und E. Elson. „Nanometer Measurements Of Motor Protein And Membrane Glycoprotein Movements“. In 33rd Annual Techincal Symposium, herausgegeben von John E. Wampler. SPIE, 1989. http://dx.doi.org/10.1117/12.962707.
Der volle Inhalt der QuelleGerwert, Klaus. „Protein Reactions Monitored by Time-Resolved Step-Scan FTIR Spectroscopy“. In Fourier Transform Spectroscopy. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/fts.1997.fwa.2.
Der volle Inhalt der QuelleLuo, Fei, Ondrej Halgas, Pratish Gawand und Sagar Lahiri. „Animal-free protein production using precision fermentation“. In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/ntka8679.
Der volle Inhalt der QuelleGurbuz, Mustafa. „PERFORMING MORAL OPPOSITION: MUSINGS ON THE STRATEGY AND IDENTITY IN THE GÜLEN MOVEMENT“. In Muslim World in Transition: Contributions of the Gülen Movement. Leeds Metropolitan University Press, 2007. http://dx.doi.org/10.55207/hzit2119.
Der volle Inhalt der QuelleSilva, Gustavo Figueiredo da, Caroline Figueiredo da Silva, Washigton Luiz Gomes de Medeiros Junior und Marcus Vinícius Magno Gonçalves. „Anti -Iglon5 Syndrome: What we know so far? A non-systematic review“. In XIII Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1516-3180.237.
Der volle Inhalt der QuelleJamalian, Samira, Christopher D. Bertram und James E. Moore. „Initial Steps Toward Development of a Lumped-Parameter Model of the Lymphatic Network“. In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14823.
Der volle Inhalt der QuelleCuppoletti, John. „Composite Synthetic Membranes Containing Native and Engineered Transport Proteins“. In ASME 2008 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2008. http://dx.doi.org/10.1115/smasis2008-449.
Der volle Inhalt der QuelleDelfim, William de Souza, Nayara Christina de Lima Curti, Marília Pires de Souza e. Silva, Lorena Dias Araújo, Indianara Keila Pastorio, Francine de Paula Roberto Domingos, Sayuri Aparecida Hirayama, Rafael de Almeida, Raquel de Mattos Filgueiras und Rafael Batista João. „The diagnostic challenge of Hashimoto’s Encephalopathy“. In XIII Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1516-3180.579.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Protein movements"
Epel, Bernard L., Roger N. Beachy, A. Katz, G. Kotlinzky, M. Erlanger, A. Yahalom, M. Erlanger und J. Szecsi. Isolation and Characterization of Plasmodesmata Components by Association with Tobacco Mosaic Virus Movement Proteins Fused with the Green Fluorescent Protein from Aequorea victoria. United States Department of Agriculture, September 1999. http://dx.doi.org/10.32747/1999.7573996.bard.
Der volle Inhalt der QuelleGafny, Ron, A. L. N. Rao und Edna Tanne. Etiology of the Rugose Wood Disease of Grapevine and Molecular Study of the Associated Trichoviruses. United States Department of Agriculture, September 2000. http://dx.doi.org/10.32747/2000.7575269.bard.
Der volle Inhalt der QuelleCarlson, Jake. Movement of Proteins - Purdue University. Purdue University Libraries, Juli 2010. http://dx.doi.org/10.5703/1288284315009.
Der volle Inhalt der QuelleEpel, Bernard, und Roger Beachy. Mechanisms of intra- and intercellular targeting and movement of tobacco mosaic virus. United States Department of Agriculture, November 2005. http://dx.doi.org/10.32747/2005.7695874.bard.
Der volle Inhalt der QuelleGafni, Yedidya, und Vitaly Citovsky. Molecular interactions of TYLCV capsid protein during assembly of viral particles. United States Department of Agriculture, April 2007. http://dx.doi.org/10.32747/2007.7587233.bard.
Der volle Inhalt der QuelleLaureanti, Joseph, Garry Buchko, Marjolein Oostrom, Bojana Ginovska und Wendy Shaw. Understanding Proton Movement in [Fe-Fe] Hydrogenases. Office of Scientific and Technical Information (OSTI), September 2022. http://dx.doi.org/10.2172/1983356.
Der volle Inhalt der QuellePoindexter, Todd L. Operationalizing the Impossible: The Responsibility to Protect Movement. Fort Belvoir, VA: Defense Technical Information Center, April 2015. http://dx.doi.org/10.21236/ad1001783.
Der volle Inhalt der QuelleWolf, Shmuel, und William J. Lucas. Involvement of the TMV-MP in the Control of Carbon Metabolism and Partitioning in Transgenic Plants. United States Department of Agriculture, Oktober 1999. http://dx.doi.org/10.32747/1999.7570560.bard.
Der volle Inhalt der QuelleStanley, Stephanie. The Tea Party and Occupy Wall Street Movements: Populism and Protest. Portland State University Library, Januar 2012. http://dx.doi.org/10.15760/honors.2.
Der volle Inhalt der QuelleSriyai, Surachanee. Rationalizing Sri Lanka: An Analysis of the 2022 Protest Movement. Critical Asian Studies, August 2022. http://dx.doi.org/10.52698/thdc4019.
Der volle Inhalt der Quelle