Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Propagation and distribution“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Propagation and distribution" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Propagation and distribution"
Clark, Robert M., Walter M. Grayman und Richard M. Males. „Contaminant Propagation in Distribution Systems“. Journal of Environmental Engineering 114, Nr. 4 (August 1988): 929–43. http://dx.doi.org/10.1061/(asce)0733-9372(1988)114:4(929).
Der volle Inhalt der QuelleHabib, Walid E., und Allen C. Ward. „Causality in constraint propagation“. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 11, Nr. 5 (November 1997): 419–33. http://dx.doi.org/10.1017/s0890060400003346.
Der volle Inhalt der QuelleGolubev, É. A. „Distribution propagation in estimating measurement uncertainty“. Measurement Techniques 51, Nr. 2 (Februar 2008): 130–35. http://dx.doi.org/10.1007/s11018-008-9014-4.
Der volle Inhalt der QuelleHuang, Yan, Yangsheng Yuan, Xianlong Liu, Jun Zeng, Fei Wang, Jiayi Yu, Lin Liu und Yangjian Cai. „Propagation of Optical Coherence Vortex Lattices in Turbulent Atmosphere“. Applied Sciences 8, Nr. 12 (03.12.2018): 2476. http://dx.doi.org/10.3390/app8122476.
Der volle Inhalt der QuelleZhu, Kaicheng, Jie Zhu, Qin Su und Huiqin Tang. „Propagation Property of an Astigmatic sin–Gaussian Beam in a Strongly Nonlocal Nonlinear Media“. Applied Sciences 9, Nr. 1 (25.12.2018): 71. http://dx.doi.org/10.3390/app9010071.
Der volle Inhalt der QuelleMakarov, P. V., Yu A. Khon und A. Yu Peryshkin. „Slow deformation fronts: model and features of distribution“. Geodynamics & Tectonophysics 9, Nr. 3 (09.10.2018): 755–69. http://dx.doi.org/10.5800/gt-2018-9-3-0370.
Der volle Inhalt der QuelleRyu, Jinsook, Kyuhyun Im, Wonjae Yu, Jaiwook Park, Taihyun Chang, Kwanyoung Lee und Namsun Choi. „Molecular Weight Distribution of Branched Polystyrene: Propagation of Poisson Distribution“. Macromolecules 37, Nr. 23 (November 2004): 8805–7. http://dx.doi.org/10.1021/ma049064a.
Der volle Inhalt der QuelleZhang, Lei, und Li Su. „Design of Improved BP Decoders and Corresponding LT Code Degree Distribution for AWGN Channels“. Wireless Communications and Mobile Computing 2020 (20.10.2020): 1–16. http://dx.doi.org/10.1155/2020/9517840.
Der volle Inhalt der QuelleSong, Sam Hong, und Jeong Moo Lee. „The Characteristics of Propagation for Mixed-Mode Fatigue Crack under Stress Re-Distribution at Fatigue Crack Tip“. International Journal of Modern Physics B 17, Nr. 08n09 (10.04.2003): 1922–27. http://dx.doi.org/10.1142/s0217979203019885.
Der volle Inhalt der QuelleSakamoto, Kazufumi, Shota Aoki, Yuhei Tanaka, Kenji Shimoda, Yoshitsune Hondo und Kenji Yasuda. „Geometric Understanding of Local Fluctuation Distribution of Conduction Time in Lined-Up Cardiomyocyte Network in Agarose-Microfabrication Multi-Electrode Measurement Assay“. Micromachines 11, Nr. 12 (14.12.2020): 1105. http://dx.doi.org/10.3390/mi11121105.
Der volle Inhalt der QuelleDissertationen zum Thema "Propagation and distribution"
Yang, Yingwei. „Distribution of the propagation system“. [S.l. : s.n.], 2004. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB11730070.
Der volle Inhalt der QuelleZhang, Zengzhe. „Fast propagation of messages in VANETs and the impact of vehicles as obstacles on signal propagation“. Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/10514.
Der volle Inhalt der QuelleHorridge, Paul. „Propagation of power line carrier signals through the distribution transformer“. Thesis, Open University, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.389900.
Der volle Inhalt der QuelleWatkins, Adam Christopher. „RADIATION INDUCED TRANSIENT PULSE PROPAGATION USING THE WEIBULL DISTRIBUTION FUNCTION“. OpenSIUC, 2012. https://opensiuc.lib.siu.edu/theses/811.
Der volle Inhalt der QuelleGasteen, M. R. „Propagation of mains marked control signals on an electricity distribution network“. Thesis, University of Bristol, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.354449.
Der volle Inhalt der QuelleBraun, Mathias. „Reduced Order Modelling and Uncertainty Propagation Applied to Water Distribution Networks“. Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0050/document.
Der volle Inhalt der QuelleWater distribution systems are large, spatially distributed infrastructures that ensure the distribution of potable water of sufficient quantity and quality. Mathematical models of these systems are characterized by a large number of state variables and parameter. Two major challenges are given by the time constraints for the solution and the uncertain character of the model parameters. The main objectives of this thesis are thus the investigation of projection based reduced order modelling techniques for the time efficient solution of the hydraulic system as well as the spectral propagation of parameter uncertainties for the improved quantification of uncertainties. The thesis gives an overview of the mathematical methods that are being used. This is followed by the definition and discussion of the hydraulic network model, for which a new method for the derivation of the sensitivities is presented based on the adjoint method. The specific objectives for the development of reduced order models are the application of projection based methods, the development of more efficient adaptive sampling strategies and the use of hyper-reduction methods for the fast evaluation of non-linear residual terms. For the propagation of uncertainties spectral methods are introduced to the hydraulic model and an intrusive hydraulic model is formulated. With the objective of a more efficient analysis of the parameter uncertainties, the spectral propagation is then evaluated on the basis of the reduced model. The results show that projection based reduced order models give a considerable benefit with respect to the computational effort. While the use of adaptive sampling resulted in a more efficient use of pre-calculated system states, the use of hyper-reduction methods could not improve the computational burden and has to be explored further. The propagation of the parameter uncertainties on the basis of the spectral methods is shown to be comparable to Monte Carlo simulations in accuracy, while significantly reducing the computational effort
Razmjoo, Gholam Reza. „A fracture mechanics approach to fatigue crack propagation under variable amplitude loading“. Thesis, University of Manchester, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.259194.
Der volle Inhalt der QuelleLouisnard, Olivier. „Contribution à l'étude de la propagation des ultrasons en milieu cavitant“. ENSMP, 1998. http://www.theses.fr/1998ENMP0817.
Der volle Inhalt der QuelleToms, Julianna J. „Effect of fluid distribution on compressional wave propagation in partially saturated rocks“. Curtin University of Technology, Department of Exploration Geophysics, 2008. http://espace.library.curtin.edu.au:80/R/?func=dbin-jump-full&object_id=128424.
Der volle Inhalt der QuelleThe thesis focus is to model attenuation and dispersion due to realistic mesoscopic fluid distributions and fluid contrasts. First X-ray tomographic images of partially saturated rock are analysed statistically to identify spatial measures useful for describing fluid distribution patterns. The correlation function and associated correlation length for a specific fluid type are shown to be of greatest utility. Next a new model, called 3DCRM (CRM stands for continuous random media) is derived, utilizing a correlation function to describe the fluid distribution pattern. It is a random media model, is accurate for small fluid contrast and approximate for large fluid contrast. Using 3DCRM attenuation and dispersion are shown to depend on fluid distribution.
Next a general framework for partial saturation called APS (acoustics of partial saturation) is extended enabling estimation of attenuation and dispersion due to arbitrary 1D/3D fluid distributions. The intent is to construct a versatile model enabling attenuation and dispersion to be estimated for arbitrary fluid distributions, contrasts and saturations. Two crucial parameters within APS called shape and frequency scaling parameters are modified via asymptotic analysis using several random media models (which are accurate for only certain contrasts in fluid bulk moduli and percent saturation). For valid fluid contrasts and saturations, which satisfy certain random media conditions there is good correspondence between modified APS and the random media models, hence showing that APS can be utilized to model attenuation and dispersion due to more realistic fluid distributions.
Finally I devise a numerical method to test the accuracy of the analytical shape parameters for a range of fluid distributions, saturations and contrasts. In particular, the analytical shape parameter for randomly distributed spheres was shown to be accurate for a large range of saturations and fluid contrasts.
Riera, Alexis J. „Predicting permeability and flow capacity distribution with back-propagation artificial neural networks“. Morgantown, W. Va. : [West Virginia University Libraries], 2000. http://etd.wvu.edu/templates/showETD.cfm?recnum=1309.
Der volle Inhalt der QuelleTitle from document title page. Document formatted into pages; contains xii, 86 p. : ill. (some col.), maps. Includes abstract. Includes bibliographical references (p. 61-63).
Bücher zum Thema "Propagation and distribution"
Dutton, E. J. Effects of drop-size distribution and climate on millimeter-wave propagation through rain. [Washington, DC]: U.S. Dept. of Commerce, National Telecommunications and Information Administration, 1986.
Den vollen Inhalt der Quelle findenDutton, E. J. Effects of drop-size distribution and climate on millimeter-wave propagation through rain. [Washington, DC]: U.S. Dept. of Commerce, National Telecommunications and Information Administration, 1986.
Den vollen Inhalt der Quelle findenDutton, E. J. Effects of drop-size distribution and climate on millimeter-wave propagation through rain. [Washington, DC]: U.S. Dept. of Commerce, National Telecommunications and Information Administration, 1986.
Den vollen Inhalt der Quelle findenDutton, E. J. Effects of drop-size distribution and climate on millimeter-wave propagation through rain. [Washington, DC]: U.S. Dept. of Commerce, National Telecommunications and Information Administration, 1986.
Den vollen Inhalt der Quelle findenDutton, E. J. Effects of drop-size distribution and climate on millimeter-wave propagation through rain. [Washington, DC]: U.S. Dept. of Commerce, National Telecommunications and Information Administration, 1986.
Den vollen Inhalt der Quelle findenDutton, E. J. Effects of drop-size distribution and climate on millimeter-wave propagation through rain. [Washington, DC]: U.S. Dept. of Commerce, National Telecommunications and Information Administration, 1986.
Den vollen Inhalt der Quelle findenGrigoriu, Mircea. Stochastic Systems: Uncertainty Quantification and Propagation. London: Springer London, 2012.
Den vollen Inhalt der Quelle findenSanterre, Rock. GPS satellite sky distribution: Impact on the propagation of some important errors in precise relative positioning. Fredericton, N.B: Dept. of Surveying Engineering, University of New Brunswick, 1989.
Den vollen Inhalt der Quelle findenRubinstein, Robert. Time correlations and the frequency spectrum of sound radiated by turbulent flows. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1997.
Den vollen Inhalt der Quelle findenGotsis, Pascal K. Progressive fracture of fiber composite build-up structures. [Washington, D.C: National Aeronautics and Space Administration, 1997.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Propagation and distribution"
Bloemen, Hans. „Gamma-Ray Views on the Galactic Cosmic-Ray Distribution“. In Genesis and Propagation of Cosmic Rays, 163–74. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-4025-3_9.
Der volle Inhalt der QuelleWu, Ru-Shan. „Spatio-temporal distribution of seismic power for a random absorptive slab in a half space“. In Wave Propagation in Complex Media, 273–87. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-1678-0_13.
Der volle Inhalt der QuelleBoyett, Mark R., Haruo Honjo, Henggui Zhang, Yoshiko Takagishi und Itsuo Kodama. „The Sinoatrial Node Gap Junction Distribution and Impulse Propagation“. In Heart Cell Coupling and Impulse Propagation in Health and Disease, 207–34. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-1155-7_8.
Der volle Inhalt der QuelleKingsbury, Howard. „Noise Sources and Propagation in Ducted Air Distribution Systems“. In Encyclopedia of Acoustics, 1039–47. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470172520.ch85.
Der volle Inhalt der QuelleLee, Chungwoo, Jaeil Hwang, Joonwoo Lee, Chulbum Ahn, Bowon Suh, Dong-Hoon Shin, Yunmook Nah und Doo-Hyun Kim. „Self-describing and Data Propagation Model for Data Distribution Service“. In Software Technologies for Embedded and Ubiquitous Systems, 102–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-87785-1_10.
Der volle Inhalt der QuelleTian, Zengshan, Xiaomou Tang, Mu Zhou und Zuohong Tan. „Probability Distribution-Aided Indoor Positioning Algorithm Based on Affinity Propagation Clustering“. In The Proceedings of the Second International Conference on Communications, Signal Processing, and Systems, 911–19. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00536-2_105.
Der volle Inhalt der QuelleMendiburu, Alexander, Roberto Santana und Jose A. Lozano. „Fast Fitness Improvements in Estimation of Distribution Algorithms Using Belief Propagation“. In Adaptation, Learning, and Optimization, 141–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28900-2_9.
Der volle Inhalt der QuelleCheng, Bo-Chao, Huan Chen und Guo-Tan Liao. „A Novel Marking Probability Distribution Using Probability Propagation in Hierarchical WSN“. In Information Security and Cryptology, 265–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01440-6_21.
Der volle Inhalt der QuelleTortoreli, Marina, Paul E. Russell, Platon Baltas und James A. Morris. „Harmonic Distortion Propagation in Distribution Systems with Utility Interactive Photovoltaic Systems“. In Seventh E.C. Photovoltaic Solar Energy Conference, 182–86. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3817-5_33.
Der volle Inhalt der QuelleHubana, Tarik, Elma Begić und Mirza Šarić. „Voltage Sag Propagation Caused by Faults in Medium Voltage Distribution Network“. In Lecture Notes in Networks and Systems, 409–19. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-71321-2_37.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Propagation and distribution"
Cohen, Leon. „Wigner distribution and pulse propagation“. In International Symposium on Optical Science and Technology, herausgegeben von Franklin T. Luk. SPIE, 2001. http://dx.doi.org/10.1117/12.448655.
Der volle Inhalt der QuelleZhang, Hao, Liangxiao Jiang und Wenqiang Xu. „Multiple Noisy Label Distribution Propagation for Crowdsourcing“. In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/204.
Der volle Inhalt der QuellePeterson, Ryan S., Bernard Wong und Emin Gun Sirer. „A content propagation metric for efficient content distribution“. In the ACM SIGCOMM 2011 conference. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/2018436.2018474.
Der volle Inhalt der QuellePezzei, Pirmin, Clemens Wurster, Michael Wollitzer, Martin Fuchs und Erich Leitgeb. „Power distribution of short free space optical propagation“. In 2014 16th International Conference on Transparent Optical Networks (ICTON). IEEE, 2014. http://dx.doi.org/10.1109/icton.2014.6876578.
Der volle Inhalt der QuelleWatkins, Adam, und Spyros Tragoudas. „Transient pulse propagation using the Weibull distribution function“. In 2012 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT). IEEE, 2012. http://dx.doi.org/10.1109/dft.2012.6378209.
Der volle Inhalt der QuelleKaczmarek, Robert, und Wan-Ying Huang. „Directional function in distribution networks through wave propagation“. In 2005 IEEE Russia Power Tech. IEEE, 2005. http://dx.doi.org/10.1109/ptc.2005.4524436.
Der volle Inhalt der QuelleOliveira, L. C. O., G. A. e Melo, J. B. Souza, C. A. Canesin, B. D. Bonatto, F. N. Belchior, M. Oliveira und E. A. Mertens. „Harmonic propagation analysis in electric energy distribution systems“. In 2011 11th International Conference on Electrical Power Quality and Utilisation (EPQU 2011). IEEE, 2011. http://dx.doi.org/10.1109/epqu.2011.6128827.
Der volle Inhalt der QuelleSantana, Roberto, Concha Bielza und Pedro Larrañaga. „Affinity propagation enhanced by estimation of distribution algorithms“. In the 13th annual conference. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/2001576.2001622.
Der volle Inhalt der QuelleKuhar, Urban, Gregor Kosec und Ales Svigelj. „Measurement noise propagation in distribution-system state estimation“. In 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). IEEE, 2017. http://dx.doi.org/10.23919/mipro.2017.7973579.
Der volle Inhalt der QuelleOhnimus, Florian, Ivan Ndip, Ege Engin, Stephan Guttowski und Herbert Reichl. „Comparison of electromagnetic field distribution in vicinity of patch and slot antennas“. In Propagation Conference (LAPC). IEEE, 2009. http://dx.doi.org/10.1109/lapc.2009.5352512.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Propagation and distribution"
Ronald C. Davidson, Hong Qin und Steven M. Lund. Truncated Thermal Equilibrium Distribution for Intense Beam Propagation. Office of Scientific and Technical Information (OSTI), Februar 2003. http://dx.doi.org/10.2172/812055.
Der volle Inhalt der QuelleWilson, Preston S. Laboratory Studies of the Impact of Fish School Density and Individual Distribution on Acoustic Propagation and Scattering. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada575019.
Der volle Inhalt der QuelleWarnock, R. L. A general method for propagation of the phase space distribution, with application to the saw-tooth instability. Office of Scientific and Technical Information (OSTI), März 2000. http://dx.doi.org/10.2172/753322.
Der volle Inhalt der QuelleBlackstock, David T. Nonlinear Acoustics: Periodic Waveguide, Finite-Amplitude Propagation in a Medium Having a Distribution of Relaxation Processes, and Production of an Isolated Negative Pulse in Water. Fort Belvoir, VA: Defense Technical Information Center, August 1993. http://dx.doi.org/10.21236/ada270530.
Der volle Inhalt der QuelleAltstetter, C. Research on hydrogen effects on phase distribution ahead of propagating cracks in stainless steel. Final report. Office of Scientific and Technical Information (OSTI), Dezember 1993. http://dx.doi.org/10.2172/106638.
Der volle Inhalt der Quelle