Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Proneural gene dynamics“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Proneural gene dynamics" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Proneural gene dynamics"
Marín-Juez, Rubén, Mireia Rovira, Diego Crespo, Michiel van der Vaart, Herman P. Spaink und Josep V. Planas. „GLUT2-Mediated Glucose Uptake and Availability Are Required for Embryonic Brain Development in Zebrafish“. Journal of Cerebral Blood Flow & Metabolism 35, Nr. 1 (08.10.2014): 74–85. http://dx.doi.org/10.1038/jcbfm.2014.171.
Der volle Inhalt der QuelleMurata, Hideki, Koji Yoshimoto, Ryusuke Hatae, Yojiro Akagi, Masahiro Mizoguchi, Nobuhiro Hata, Daisuke Kuga et al. „Detection of proneural/mesenchymal marker expression in glioblastoma: temporospatial dynamics and association with chromatin-modifying gene expression“. Journal of Neuro-Oncology 125, Nr. 1 (14.08.2015): 33–41. http://dx.doi.org/10.1007/s11060-015-1886-y.
Der volle Inhalt der QuelleBukharina, T. A., V. P. Golubyatnikov und D. P. Furman. „The central regulatory circuit in the gene network controlling the morphogenesis of Drosophila mechanoreceptors: an <i>in silico</i> analysis“. Vavilov Journal of Genetics and Breeding 27, Nr. 7 (11.12.2023): 746–54. http://dx.doi.org/10.18699/vjgb-23-87.
Der volle Inhalt der QuelleDeSouza, Patrick, Xuan Qu, Matthew Ishahak, Colin McCornack, Devi Annamalai, Luis Batista, Ting Wang, Christopher Maher, Jeffrey Millman und Albert Kim. „MODL-25. ANALYSIS OF TUMOR CELL HETEROGENEITY IN A HUMAN NEURAL PROGENITOR-BASED MODEL OF GLIOBLASTOMA REVEALS NEURODEVELOPMENTAL PROGRAMS AND CYTOSKELETAL DYNAMICS“. Neuro-Oncology 24, Supplement_7 (01.11.2022): vii296. http://dx.doi.org/10.1093/neuonc/noac209.1152.
Der volle Inhalt der QuelleGaitanou, Maria, Katerina Segklia und Rebecca Matsas. „Cend1, a Story with Many Tales: From Regulation of Cell Cycle Progression/Exit of Neural Stem Cells to Brain Structure and Function“. Stem Cells International 2019 (02.05.2019): 1–16. http://dx.doi.org/10.1155/2019/2054783.
Der volle Inhalt der QuelleHwang, Dong-Woo, Anbalagan Jaganathan, Padmina Shrestha, Ying Jin, Nour El-Amine, Sidney H. Wang, Molly Hammell und Alea A. Mills. „Chromatin-mediated translational control is essential for neural cell fate specification“. Life Science Alliance 1, Nr. 4 (August 2018): e201700016. http://dx.doi.org/10.26508/lsa.201700016.
Der volle Inhalt der QuelleKant, Shiva, Pravin Kesarwani, Antony Prabhu, Stewart Graham, Katie Buelow, Ichiro Nakano und Prakash Chinnaiyan. „CBMT-28. FATTY ACID OXIDATION PROVIDES METABOLIC PLASTICITY TO MAINTAIN GROWTH IN THE DYNAMIC MICROENVIRONMENT OF GLIOBLASTOMA“. Neuro-Oncology 21, Supplement_6 (November 2019): vi39. http://dx.doi.org/10.1093/neuonc/noz175.150.
Der volle Inhalt der QuelleOrenic, T. V., L. I. Held, S. W. Paddock und S. B. Carroll. „The spatial organization of epidermal structures: hairy establishes the geometrical pattern of Drosophila leg bristles by delimiting the domains of achaete expression“. Development 118, Nr. 1 (01.05.1993): 9–20. http://dx.doi.org/10.1242/dev.118.1.9.
Der volle Inhalt der QuelleStumpo, Vittorio, Aruljothi Marappian, Quintino Giorgio D’Alessandris, Simone Pacioni, Rina Di Bonaventura, Lara Ebbert, Martina Giordano et al. „CBMT-24. CHARACTERIZATION OF PRIMARY CILIUM IN RECURRENT GLIOBLASTOMA: IMPLICATIONS FOR NEW THERAPEUTIC TARGETS“. Neuro-Oncology 21, Supplement_6 (November 2019): vi38. http://dx.doi.org/10.1093/neuonc/noz175.146.
Der volle Inhalt der QuelleNechiporuk, Tamilla, James McGann, Karin Mullendorff, Jenny Hsieh, Wolfgang Wurst, Thomas Floss und Gail Mandel. „The REST remodeling complex protects genomic integrity during embryonic neurogenesis“. eLife 5 (08.01.2016). http://dx.doi.org/10.7554/elife.09584.
Der volle Inhalt der QuelleDissertationen zum Thema "Proneural gene dynamics"
Dyballa, Sylvia 1982. „Proneural gene requirements and progenitor dynamics in sensory organ development“. Doctoral thesis, Universitat Pompeu Fabra, 2015. http://hdl.handle.net/10803/399037.
Der volle Inhalt der QuelleL'oïda interna és l'òrgan sensorial responsable de l'audició i l'equilibri. La seva unitat funcional és el parxe sensorial que contèn: i) les cèl.lules ciliades, que són els mecano-transductors que detecten, i ii) les neurones sensorials, que envien aquests estímuls al cervell posterior. La generació de cèl.lules ciliades i de neurones te lloc a la placoda òtica molt aviat durant el desenvolupament embrionari . L'especificació del destí cel.lular es basa en l'expressió dels gens proneurals i és concomitant amb el creixement de l’òrgan i la seva morfogènesi. Hem utilitzat embrions de peix zebra i combinat imatges en viu amb eines genètiques per investigar: i) la ubicació dels diferents grups de progenitors, ii) les potencialitats que presenten, i iii) el comportament dinàmic d'aquestes cèl.lules en la generació dels diferents destins. Hem generat mapes progenitors pels diferents destins cel.lulars a partir d’experiments de llinatge i hem centrat la nostra anàlisi en els canvis de comportament dels progenitors després de la inactivació d'un gen proneural i els aspectes espacials i temporals de l'especificació de destí cel.lular.
Kim, Jang-Mi. „Quantitative live imaging analysis of proneural factor dynamics during lateral inhibition in Drosophila“. Electronic Thesis or Diss., Sorbonne université, 2022. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2022SORUS585.pdf.
Der volle Inhalt der QuelleLateral inhibition by Notch is a conserved mechanism that regulates the formation of regular patterns of cell fates1. In many tissues, intercellular Delta-Notch signaling coordinates in time and space binary fate decisions thought to be stochastic. In the context of sensory organ development in Drosophila, it has been proposed that fate symmetry breaking between equipotent cells relies on random fluctuations in the level of Delta/Notch2 (or one of their upstream regulators, e.g. YAP1 in the mouse gut3), with small differences being amplified and stabilized to generate distinct fates. Notch-mediated stochastic fate choices may also be biased by intrinsic, i.e. cell history4, or extrinsic factors. Although lateral inhibition has been extensively studied in many developmental contexts, a detailed in vivo analysis of fate and signaling dynamics is still lacking. Here, we used a quantitative live imaging approach to study the dynamics of sensory organ fate specification in the Drosophila abdomen. The accumulation of the transcription factor Scute (Sc), a key regulator of sensory organ formation in the abdomen, was used as a proxy to monitor proneural competence and SOP fate acquisition in developing pupae expressing GFP-tagged Sc. We generated high spatial and temporal resolution movies and segmented/tracked all nuclei using a custom-made pipeline. This allowed us to quantitatively study Sc dynamics in all cells. Having defined a fate difference index (FDI), we found that symmetry breaking can be detected early, when cells expressed very low and heterogeneous levels of Sc. We also observed rare cases of late fate resolution, e.g. when two cells close to each other accumulate high levels of GFP-Scute before being pulled away from each other. Interestingly, we did not observe a rapid decrease in GFP-Sc levels in non-selected cells right after symmetry breaking. Also, the rate of change of FDI values after symmetry breaking appeared to positively correlate with cell-to-cell heterogeneity in Sc levels. Whether increased heterogeneity is causally linked to symmetry breaking remains to be tested. We next addressed if this stochastic fate decision is biased by birth order (as proposed in the context of the AC/VU decision in worms4) or by the size and geometry of cell-cell contacts (as modeling suggested5). We found that neither appeared to significantly influence Notch-mediated binary fate decisions in the Drosophila abdomen. In conclusion, our live imaging data provide a detailed analysis of proneural dynamics during lateral inhibition in Drosophila
Belzunce, Guillermo Ivan 1992. „Uncovering the interplay between call fate specification and progenitor dynamics during the development of the lower rhombic lip“. Doctoral thesis, Universitat Pompeu Fabra, 2019. http://hdl.handle.net/10803/668134.
Der volle Inhalt der QuelleEl Llavi Ròmbic Inferior (LRI) és una estructura neuroepitelial transient del romboencèfal dorsal que genera nuclis profunds del tronc de l’encèfal, com ara els nuclis vestibulars, auditius i precerebel·lars. En aquest treball hem seguit la població progenitora del LRI durant els primers estadis neurogènics i de morfogènesi per entendre la funció proneural i la dinàmica dels progenitors durant l’especificació neuronal. Informem sobre la xarxa genètica reguladora depenent d’atoh1 que opera al LRI, així com del comportament proliferatiu i migratori de les cèl·lules derivades del LRI servint-nos d’experiments funcionals i d’imatge in vivo d’embrions de peix zebra. Proposem que atoh1a i atoh1b estan subfuncionalitzats: atoh1a actua com a gen selector dels progenitors LRI, mentre que atoh1b funciona sota atoh1a mantenint el seu programa neurogènic. A més, els estudis de llinatge cel·lular in vivo mostren la regionalització dels diferents modes de divisió, orquestrant així l’equilibri entre la diferenciació neuronal i l’auto-renovació progenitora.