Dissertationen zum Thema „Prompt Fission Neutrons“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-18 Dissertationen für die Forschung zum Thema "Prompt Fission Neutrons" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Qi, Liqiang. „Measurements of Prompt Gamma Rays Emitted in Fission of ²³⁸U and ²³⁹ Pu Induced by Fast Neutrons from the LICORNE Neutron Source“. Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS320/document.
Der volle Inhalt der QuellePrompt fission γ-ray spectra are important nuclear data for reactor physics, as an input for gamma heating calculations, since the gamma heating effect can be under-estimated by up to ~28% with present nuclear data. Furthermore the new prompt fission γ-ray information will be useful from a fundamental physics point of view, where results can be compared with many competing theoretical predictions to refine models of fission process. Prompt fission γ-ray spectra have been measured for the fast-neutron-induced fission of ²³⁸U and ²³⁹PuPu, using fast neutrons generated from the LICORNE source. The experimental setup consisted of an ionization chamber and different types of scintillation detectors, including LaBr₃ and PARIS phoswich detectors. An analysis procedure, including unfolding and recovering the γ-ray response in the scintillation detectors, is developed to extract the prompt fission γ-ray spectrum and corresponding spectral characteristics. The experimental results are compared to the fission modeling codes GEF and FREYA. This comparison reveals that the spectral characteristics are related to the energetic conditions, isotopic yields and angular momentum of the fission fragments. The energy dependence of the spectral characteristics shows that the prompt γ-rays emission is quite insensitive to the incident neutron energy. However, a strong dependence on the particular fissioning system is observed
Tovar, Jesus Felipe. „Studies of prompt gamma and neutron yield due to 2.5 MeV neutrons using GEANT4“. To access this resource online via ProQuest Dissertations and Theses @ UTEP, 2009. http://0-proquest.umi.com.lib.utep.edu/login?COPT=REJTPTU0YmImSU5UPTAmVkVSPTI=&clientId=2515.
Der volle Inhalt der QuelleBerge, Léonie. „Contribution à la modélisation des spectres de neutrons prompts de fission .Propagation d'incertitudes sur un calul de fluence cuve“. Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAI039/document.
Der volle Inhalt der QuelleThe prompt fission neutron spectrum (PFNS) is very important for various nuclear physics applications. Yet, except for the 252Cf spontaneous fission spectrum which is an international standard and is used for metrology purposes, the PFNS is still poorly known for most of the fissionning nuclides. In particular, few measurements exist for the fast fission spectrum (induced by a neutron whose energy exceeds about 100 keV), and the international evaluations show strong discrepancies. There are also very few data about covariances associated to the various PFNS evaluations. In this work we present three aspects of the PFNS evaluation. The first aspect is about the spectrum modeling with the FIFRELIN code, developed at CEA Cadarache, which simulates the fission fragment de-excitation by successive emissions of prompt neutrons and gammas, via the Monte-Carlo method. This code aims at calculating all fission observables in a single consistent calculation, starting from fission fragment distributions (mass, kinetic energy and spin). FIFRELIN is therefore more predictive than the analytical models used to describe the spectrum. A study of model parameters which impact the spectrum, like the fragment level density parameter, is presented in order to better reproduce the spectrum. The second aspect of this work is about the evaluation of the PFNS and its covariance matrix. We present a methodology to produce this evaluation in a rigorous way, with the CONRAD code, developed at CEA Cadarache. This implies modeling the spectrum through simple models, like the Madland-Nix model which is the most commonly used in the evaluations, by adjusting the model parameters to reproduce experimental data. The covariance matrix arises from the rigorous propagation of the sources of uncertainty involved in the calculation. In particular, the systematic uncertainties arising from the experimental set-up are propagated via a marginalization technique. The marginalization allows propagating these uncertainties on the calculated spectrum, and obtaining realistic uncertainties without having to artificially raise them, as it is sometimes necessary in Bayesian adjustments. The experimental uncertainty propagation also impacts the spectrum correlation matrix. We present the result for thermal neutron-induced fission of 235U and 239Pu. For the Madland-Nix model with constant inverse cross-section, the prompt neutron mean energy is 1.979 MeV for 235U and 2.087 MeV for 239Pu. The last aspect of this work is the calculation of the impact of the PFNS and its covariance matrix on a reactor vessel flux. This calculation is of major importance, since the vessel fluence estimation determines the vessel integrity, and therefore determines the reactor lifetime. We observe the importance of the PFNS correlation terms, to compute in particular the vessel flux uncertainty above 1 MeV, which is of the order of 6% (uncertainty only due to PFNS)
Sardet, Alix. „Spectres en énergie des neutrons prompts de fission : optimisation du dispositif expérimental et application à l'²³⁸U“. Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLS002/document.
Der volle Inhalt der QuelleThe nuclear fission is a complex phenomenon whose mechanisms are not fully understood. Within the framework of an international cooperation, the CEA/DAM/DIF is taking part in the study of prompt fission neutron energy spectra from fast neutron induced fission, focusing on the low energy domain of these spectra (<1 MeV). This PhD was dedicated to the optimization of the experimental setup. New fission detectors were developed. We report on their conception and their performances in terms of alpha-fission discrimination, timing resolution and distortion on the measured spectrum. In a second step, several neutron detectors were studied (neutron-gamma discrimination, detection efficiency), so as to optimize the detection of low energy neutrons (<1 MeV). In the present document, we report on the results of this comparative study. Finally, the optimized experimental setup was used to measure prompt fission neutron energy spectra for the fast-neutron induced fission of ²³⁸U. After detailing the data analysis method, the results are interpreted in terms of models and evaluations
Varapai, Natallia. „Développement d'un dispositif expérimental basé sur la digitalisation des signaux et dédié à la caractérisation des fragments de fission et des neutrons prompt[s] émis“. Bordeaux 1, 2006. http://www.theses.fr/2006BOR13274.
Der volle Inhalt der QuelleFondement, Valentin. „Conception d'une sonde diagraphique neutronique dans le cadre de l'exploration et de l'exploitation minière de l'uranium“. Electronic Thesis or Diss., Université Grenoble Alpes, 2023. http://www.theses.fr/2023GRALY076.
Der volle Inhalt der QuelleThis PhD in the frame of CEA - ORANO Mining collaboration, aims to develop a new logging tool, based on neutron active interrogation, in the scope of uranium exploration and exploitation. A large amount of its production comes from In situ recovery mines, by leaching chemically the ore in the ground over hundreds of meters. It is mandatory to determine the amount of uranium available, but also the permeability of the sand, to evaluate the profitability. This geological quantity can be assessed from the measurement of the porosity hydrogen that is the volume fraction of water in the rock formation. It is possible to measure this one by using neutron probes. Uranium, and especially its 235 isotope, can also be measured with that kind of logging tools, if they rely on a pulsed neutron generator. This research leads to a new probe design that allows performing the both measurements with a unique cadmium-shielded-helium 3-proportional counter. The generator emits a 50 µs neutron burst every 5 ms (at 200 Hz). In the 800 µs after the salvo we can measure the not-fully-thermalised neutrons, thanks to the cadmium shield acting like a filter. The obtained count is inversely proportional to the hydrogen, and water, environment content. Over the following milliseconds, thermal neutrons of the rock formation will lead to 235U nuclei fissions, which emit in average 2.5 prompt fission neutrons. A chunk of these neutrons is emitted toward our counter, as the neutrons from the generator, fully thermalized after 800 µs, cannot cross the cadmium. Thanks to that double energy-time discrimination, it is possible to measure the prompt fission neutron signal contribution, which is proportional to the uranium concentration. As thermal neutrons are absorbed by the hydrogen content in the environment, we can use the porosity hydrogen measurement to correct the prompt fission neutrons signal from its effect. Furthermore, a parametric study has been conducting, using the Monte-Carlo simulation code MCNP 6.1, to compare the quantities that affect the measurements performances (e.g. diameter, standoff, casing thickness, casing, mudcake thickness, lithology). Finally, the new measurement methods feasibility has been validated through two experimental campaigns: in one hand, the capability of the electronics to handle input count rates in the 106 s-1 yield, during and right after a pulse of the neutron D-T generator. In the other hand, a laboratory model of the neutron probe has been built and tested in a dedicated calibration drum, filled with 1.6 t Fontainebleau sand. An agreement between experiment and computer simulations has been found, which validates the uranium concentration measurement and allows the understanding of the main components of the active background. This study highlighted the contribution of the oxygen 17 activation delayed neutrons, in the water saturated sandstone environments. The signal and noise analysis method were qualified, leading to the first estimations of in situ performances, like the detection limit of the uranium concentration measurement, from 10 to 200 ppm for 3 min of acquisition, for hydrogen porosities ranging respectively from 0 to 40%
Martin, Julie-Fiona. „Coulex fission of ²³⁴U, ²³⁵U, ²³⁷Np and ²³⁸Np studied within the SOFIA experimental program“. Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112315/document.
Der volle Inhalt der QuelleSOFIA (Studies On FIssion with Aladin) is an experimental project which aims at systematically measuring the fission fragments' isotopic yields as well as their total kinetic energy, for a wide variety of fissioning nuclei. The PhD work presented in this dissertation takes part in the SOFIA project, and covers the fission of nuclei in the region of the actinides : ²³⁴U, ²³⁵U, ²³⁷Np and ²³⁸Np.The experiment is led at the heavy-ion accelerator GSI in Darmstadt, Germany. This facility provides intense relativistic primary beam of 238U. A fragmentation reaction of the primary beam permits to create a secondary beam of radioactive ions, some of which the fission is studied. The ions of the secondary beam are sorted and identified through the FR-S (FRagment Separator), a high resolution recoil spectrometer which is tuned to select the ions of interest.The selected - fissile - ions then fly further to Cave-C, an experimental area where the fission experiment itself takes place. At the entrance of the cave, the secondary beam is excited by Coulomb interaction when flying through an target; the de-excitation process involves low-energy fission. Both fission fragments fly forward in the laboratory frame, due to the relativistic boost inferred from the fissioning nucleus.A complete recoil spectrometer has been designed and built by the SOFIA collaboration in the path of the fission fragments, around the existing ALADIN magnet. The identification of the fragments is performed by means of energy loss, time of flight and deviation in the magnet measurements. Both fission fragments are fully (in mass and charge) and simultaneously identified.This document reports on the analysis performed for (1) the identification of the fissioning system, (2) the identification of both fission fragments, on an event-by-event basis, and (3) the extraction of fission observables: yields, TKE, total prompt neutron multiplicity. These results, concerning the actinides, are discussed, and the set of data extracted is provided
Abdelrahman, Y. S. „Prompt gamma-rays from fission fragments“. Thesis, University of Manchester, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.234192.
Der volle Inhalt der QuelleMcGinnis, Jason M. „PROMPT FISSION NEUTRON ENERGY SPECTRUM OF n+235U“. UKnowledge, 2019. https://uknowledge.uky.edu/physastron_etds/63.
Der volle Inhalt der QuelleMiller, Zachariah W. „A MEASUREMENT OF THE PROMPT FISSION NEUTRON ENERGY SPECTRUM FOR 235U(n,f) AND THE NEUTRON-INDUCED FISSION CROSS SECTION FOR 238U(n,f)“. UKnowledge, 2015. http://uknowledge.uky.edu/physastron_etds/29.
Der volle Inhalt der QuelleRyan, James. „Measuring the energies and multiplicities of prompt gamma-ray emissions from neutron-induced fission of 235 U using the STEFF spectrometer“. Thesis, University of Manchester, 2018. https://www.research.manchester.ac.uk/portal/en/theses/measuring-the-energies-and-multiplicities-of-prompt-gammaray-emissions-from-neutroninduced-fission-of-235-u-using-the-steff-spectrometer(5fca332e-58ef-463f-96ba-99d87f0ecf44).html.
Der volle Inhalt der QuelleRąpała, Michał. „Etude de la fission nucléaire par spectrométrie des rayons gamma prompts“. Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS390/document.
Der volle Inhalt der QuelleThe desire to improve the fuel efficiency of nuclear reactors has motivated new solutions in their design. One of them is the heavy reflector used in the generation III+ and in the future generation IV reactors. γ-rays passing through matter cause its excitation and temperature rise. It is a process called γ-heating, and it is responsible for more than 90% of the heat production in the non-fuel region of the nuclear reactor. This is also the case of the heavy reflector. To simulate the γ-heating effect in every state of the nuclear reactor it is necessary to have precise data on the prompt γ-rays emitted by different fission fragments produced in the course of the nuclear chain reaction. In 2012, at the research reactor of the ILL, an innovative experiment, called EXILL, was conducted. It produced a large amount of useful data on the de-excitation of the fission fragments. A large number of HPGe detectors were used to study the neutron induced fission process by measuring the emitted γ-rays. Fissile targets were irradiated by an intense cold neutron beam. In this work we analyzed the ²³⁵U targets. We studied several fission fragments and more generally the fission process by using high-resolution γ-ray spectroscopy. At the beginning, we used the standard γ-γ-γ coincidence analysis method. We were able to filter experimental data, identify the well produced γ-rays, and calculate their relative intensities. The problems we have encountered are related to the background. The results obtained with this method were background dependent and thus presented some problems with reproducibility. We therefore developed and tested a new analysis methodology. Its crucial feature is a coincidence gates scanning in three directions which helps to find the most suitable background. The idea was to move from a “spectroscopic” method, which main purpose is finding new transitions and excited states in a nucleus, to a “spectrometric” method, which allows us to obtain more precise γ-ray intensities. We developed a semi-automatic analysis software which facilitates fitting of the chosen γ-ray peak, the contamination and the background. Various γ-ray intensity calculation schemes were derived to take into account different contamination strengths and placements. The results of the analysis with the new technique are reproducible and more reliable. The standard and the new analysis method were compared in the ¹⁴²Ba analysis. In this work, we also compared our experimental results on some nuclei, such as ¹⁰⁰Zr, with the simulation results performed with the FIFRELIN code. It is a Monte-Carlo code which simulates the fission process and the de-excitation of the fission fragments. It uses various models to describe these processes. We were able to test the behavior of different models implemented in FIFRELIN to find the optimal simulation parameter values and to test how well these setups reproduce the experimental results. FIFRELIN was unable to simultaneously reproduce the γ-ray intensities of ¹⁰⁰Zr and the prompt-neutron multiplicity averaged over all fission fragments. However, with modified simulation parameters, FIFRELIN locally provided correct prompt-neutron multiplicity for the fission fragment with the atomic mass A=100 and well reproduced γ-ray intensities of ¹⁰⁰Zr. We also compared our experimental results on ¹⁰⁰Zr coming from the ²³⁵U(n,f) process with the other available experimental data coming from the experiments on ²⁴⁸Cm(sf) and ²⁵²Cf(sf), and another experiment on ²³⁵U(n,f)
Varapai, Nathallia. „Développement d'un dispositif expérimental basé sur ladigitalisation des signaux et dédié à la caractérisation desfragments de fission et des neutrons prompte émis“. Phd thesis, Université Sciences et Technologies - Bordeaux I, 2006. http://tel.archives-ouvertes.fr/tel-00404495.
Der volle Inhalt der QuelleNibart, Vincent. „Projet PIAFE : transport d'ions exotiques de basse énergie sur longue distance“. Université Joseph Fourier (Grenoble), 1996. http://www.theses.fr/1996GRE10019.
Der volle Inhalt der QuelleNicol, Tangi. „Caractérisation des colis de déchets radioactifs par activation neutronique“. Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAY021/document.
Der volle Inhalt der QuelleNuclear activities produce radioactive wastes classified following their radioactive level and decay time. An accurate characterization is necessary for efficient classification and management. Medium and high level wastes containing long lived radioactive isotopes will be stored in deep geological storage for hundreds of thousands years. At the end of this period, it is essential to ensure that the wastes do not represent any risk for humans and environment, not only from radioactive point of view, but also from stable toxic chemicals. This PhD thesis concerns the characterization of toxic chemicals and nuclear material in radioactive waste, by using neutron activation analysis, in the frame of collaboration between the Nuclear Measurement Laboratory of CEA Cadarache, France, and the Institute of Nuclear Waste Management and Reactor Safety of the research center, FZJ (Forschungszentrum Jülich GmbH), Germany. The first study is about the validation of the numerical model of the neutron activation cell MEDINA (FZJ), using MCNP Monte Carlo transport code. Simulations and measurements of prompt capture gamma rays from small samples measured in MEDINA have been compared for a number of elements of interest (beryllium, aluminum, chlorine, copper, selenium, strontium, and tantalum). The comparison was performed using different nuclear databases, resulting in satisfactory agreement and validating simulation in view of following studies. Then, the feasibility of fission delayed gamma-ray measurements of 239Pu and 235U in 225 L waste drums has been studied, considering bituminized or concrete matrixes representative of wastes produced in France and Germany. The delayed gamma emission yields were first determined from uranium and plutonium metallic samples measurements in REGAIN, the neutron activation cell of LMN, showing satisfactory consistency with published data. The useful delayed gamma signals of 239Pu and 235U, homogeneously distributed in the 225 L matrixes, were then determined by MCNP simulations using MEDINA numerical model. Weak signals of about one hundred counts per gram of 239Pu or 235U after 7200 s irradiation were obtained. Because of the high gamma emission in the bituminized waste produced in France (about 1 TBq of 137Cs per drum), the use of collimator and/or shielding is mandatory to avoid electronic saturation, making fission delayed gamma rays undetectable. However, German concrete drums being of lower activity, their corresponding active background was measured in MEDINA with a concrete mock-up, leading to detection limits between 10 and 290 g of 235U or239Pu, depending on the delayed gamma line. In order to improve these performances, the shielding of MEDINA germanium detector was optimized using MCNP calculations, resulting in gamma and neutron background reduction factors of 4 and 5, respectively. The experimental validation of the shielding efficiency was performed by implementing easy-to-build configurations in MEDINA, which confirmed the expected background reduction factors predicted by MCNP. Thanks to an optimized detector shielding, it will also be possible to use a higher neutron emission source, like a high flux neutron generator or an electron LINAC with appropriate conversion targets, in view to further reduce detection limits
Cheikh, Mhamed Maher. „Production de noyaux exotiques par photofission : le projet ALTO : premiers résultats“. Phd thesis, Université d'Evry-Val d'Essonne, 2006. http://tel.archives-ouvertes.fr/tel-00137745.
Der volle Inhalt der QuelleNous avons mené une étude exhaustive de radioprotection pour dimensionner et définir la nature des blindages nécessaires pour faire face aux flux intenses de photons et de neutrons générés dans la cible de production.
Les simulations Monte Carlo avec le code FLUKA nous ont permis de calculer le transport simultané des photons et des neutrons avec une modélisation intégrale des structures géométriques très complexes. Pour l'ensemble cible-source d'ions et les points critiques de pertes de faisceaux, nous proposons des blindages optimisés basés essentiellement sur la structure segmentée.
Nous avons étudié l'adéquation d'une cible épaisse de carbure d'uranium pour la production de noyaux radioactifs riches en neutrons par photofission. En particulier, nous avons montré la validité du code FLUKA pour la photofission avec un faisceau d'électrons de 50 MeV, en comparant les résultats de calculs aux mesures expérimentales réalisées.
Enfin, nous présentons nos travaux de conception et de développement d'un prototype de source d'ions de type FEBIAD destinée aux installations de seconde génération : la source IRENA. Ces travaux montrent à quel point les considérations de radioprotection sont également impliquées dans le développement de la source.
Nordström, Fredrik. „Benchmark of the fission channels in TALYS“. Thesis, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-446616.
Der volle Inhalt der QuelleMueller, Jonathan Michael. „Prompt Neutron Polarization Asymmetries in Photossion of Isotopes of Thorium, Uranium, Neptunium, and Plutonium“. Diss., 2013. http://hdl.handle.net/10161/8230.
Der volle Inhalt der QuelleNearly mono-energetic, high intensity (~10
Dissertation