Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Prompt elastogravity signals“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Prompt elastogravity signals" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Prompt elastogravity signals"
Vallée, Martin, und Kévin Juhel. „Multiple Observations of the Prompt Elastogravity Signals Heralding Direct Seismic Waves“. Journal of Geophysical Research: Solid Earth 124, Nr. 3 (März 2019): 2970–89. http://dx.doi.org/10.1029/2018jb017130.
Der volle Inhalt der QuelleJuhel, K., J.-P. Montagner, M. Vallée, J. P. Ampuero, M. Barsuglia, P. Bernard, E. Clévédé, J. Harms und B. F. Whiting. „Normal mode simulation of prompt elastogravity signals induced by an earthquake rupture“. Geophysical Journal International 216, Nr. 2 (18.10.2018): 935–47. http://dx.doi.org/10.1093/gji/ggy436.
Der volle Inhalt der QuelleShimoda, Tomofumi, Kévin Juhel, Jean-Paul Ampuero, Jean-Paul Montagner und Matteo Barsuglia. „Early earthquake detection capabilities of different types of future-generation gravity gradiometers“. Geophysical Journal International 224, Nr. 1 (10.10.2020): 533–42. http://dx.doi.org/10.1093/gji/ggaa486.
Der volle Inhalt der QuelleJuhel, Kévin, Quentin Bletery, Andrea Licciardi, Martin Vallée, Céline Hourcade und Théodore Michel. „Fast and full characterization of large earthquakes from prompt elastogravity signals“. Communications Earth & Environment 5, Nr. 1 (04.10.2024). http://dx.doi.org/10.1038/s43247-024-01725-9.
Der volle Inhalt der QuelleLicciardi, Andrea, Quentin Bletery, Bertrand Rouet-Leduc, Jean-Paul Ampuero und Kévin Juhel. „Instantaneous tracking of earthquake growth with elastogravity signals“. Nature, 11.05.2022. http://dx.doi.org/10.1038/s41586-022-04672-7.
Der volle Inhalt der QuelleHourcade, Céline, Kévin Juhel und Quentin Bletery. „PEGSGraph: A Graph Neural Network for Fast Earthquake Characterization Based on Prompt ElastoGravity Signals“. Journal of Geophysical Research: Machine Learning and Computation 2, Nr. 1 (17.02.2025). https://doi.org/10.1029/2024jh000360.
Der volle Inhalt der QuelleJuhel, Kévin, Zacharie Duputel, Luis Rivera und Martin Vallée. „Early Source Characterization of Large Earthquakes Using W Phase and Prompt Elastogravity Signals“. Seismological Research Letters, 14.11.2023. http://dx.doi.org/10.1785/0220230195.
Der volle Inhalt der QuelleDissertationen zum Thema "Prompt elastogravity signals"
Arias, Mendez Gabriela. „Alerte tsunami à partir de signaux élasto-gravitationnels par apprentissage profond“. Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ5080.
Der volle Inhalt der QuelleAccurate and timely estimation of large earthquake magnitudes is critical to forecast potential tsunamis. Traditional earthquake early warning systems, relying on the early recorded seismic (P) waves, provide fast magnitude (Mw) estimates but typically saturate for Mw ≥ 7.5 events, making them unfit for tsunami warning. Alternative systems, relying on the later W phase or on geodetic signals, provide more accurate unsaturated magnitude estimates, to the cost of much slower warning, and therefore much shorter warning times. In this context, we explore the potential of prompt elastogravity signals (PEGS). PEGS propagate at the speed of light, are sensitive to the magnitude and focal mechanism of the earthquake and do not saturate for very large events. In order to rapidly leverage the information contained in these very low-amplitude signals we use a deep learning approach. We first train a Convolutional Neural Network (CNN) to estimate the magnitude and location of an earthquake based on synthetic PEGS augmented with empirical noise (recorded by actual seismometers). Tested on real data along the chilean subduction zone, we show that it would have estimated correctly the magnitude of the 2010 Mw 8.8 Maule earthquake. Nevertheless, the approach appears to be limited to Mw ≥ 8.7 events in this context. We then use a Graph Neural Network (GNN) designed to improve the performance of the CNN. We show that the GNN can be used to rapidly estimate the magnitude of Mw ≥ 8.3 events in Peru. Finally, we implement the model in the early warning system of Peru (as a complement of the current earthquake early warning system) and test its operational use for tsunami warning in simulated real time