Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Programming functions.

Zeitschriftenartikel zum Thema „Programming functions“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Programming functions" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Neralić, Luka, und Sanjo Zlobec. „LFS functions in multi-objective programming“. Applications of Mathematics 41, Nr. 5 (1996): 347–66. http://dx.doi.org/10.21136/am.1996.134331.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Odersky, Martin. „Programming with variable functions“. ACM SIGPLAN Notices 34, Nr. 1 (Januar 1999): 105–16. http://dx.doi.org/10.1145/291251.289433.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Rhodes, Frank, und H. Paul Williams. „Discrete subadditive functions as Gomory functions“. Mathematical Proceedings of the Cambridge Philosophical Society 117, Nr. 3 (Mai 1995): 559–74. http://dx.doi.org/10.1017/s0305004100073370.

Der volle Inhalt der Quelle
Annotation:
Our aim, in this paper, is to study a class of functions which occurs in pure integer programming, and to investigate conditions under which discrete subadditive functions belong to that class. The inspiration for the paper was the problem of classifying discrete metrics used in pattern recognition, while the methods of proof of the main theorem are those of pure integer programming.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Baykasoğlu, Adil, und Sultan Maral. „Fuzzy functions via genetic programming“. Journal of Intelligent & Fuzzy Systems 27, Nr. 5 (2014): 2355–64. http://dx.doi.org/10.3233/ifs-141205.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Ahluwalia, Manu, und Larry Bull. „Coevolving functions in genetic programming“. Journal of Systems Architecture 47, Nr. 7 (Juli 2001): 573–85. http://dx.doi.org/10.1016/s1383-7621(01)00016-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Savage, Neil. „Using functions for easier programming“. Communications of the ACM 61, Nr. 5 (24.04.2018): 29–30. http://dx.doi.org/10.1145/3193776.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Alvarez, Fernando, und Nancy L. Stokey. „Dynamic Programming with Homogeneous Functions“. Journal of Economic Theory 82, Nr. 1 (September 1998): 167–89. http://dx.doi.org/10.1006/jeth.1998.2431.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Chou, J. H., Wei-Shen Hsia und Tan-Yu Lee. „Convex programming with set functions“. Rocky Mountain Journal of Mathematics 17, Nr. 3 (September 1987): 535–44. http://dx.doi.org/10.1216/rmj-1987-17-3-535.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Wang, Chung-lie, und An-qing Xing. „Dynamic programming and penalty functions“. Journal of Mathematical Analysis and Applications 150, Nr. 2 (August 1990): 562–73. http://dx.doi.org/10.1016/0022-247x(90)90123-w.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Weir, T. „Programming with semilocally convex functions“. Journal of Mathematical Analysis and Applications 168, Nr. 1 (Juli 1992): 1–12. http://dx.doi.org/10.1016/0022-247x(92)90185-g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Royset, J. O. „Optimality functions in stochastic programming“. Mathematical Programming 135, Nr. 1-2 (11.06.2011): 293–321. http://dx.doi.org/10.1007/s10107-011-0453-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Nigiyan, S. A. „$ \lambda $-DEFINABILITY OF BUILT-IN McCARTHY FUNCTIONS AS FUNCTIONS WITH INDETERMINATE VALUES OF ARGUMENTS“. Proceedings of the YSU A: Physical and Mathematical Sciences 53, Nr. 3 (250) (16.12.2019): 191–202. http://dx.doi.org/10.46991/pysu:a/2019.53.3.191.

Der volle Inhalt der Quelle
Annotation:
The built-in functions of programming languages are functions with indeterminate values of arguments. The built-in McCarthy functions $ car $, $ cdr $, $ cons $, $ null $, $ atom $, $ if $, $ eq $, $ not $, $ and $, $ or $, are used in all functional programming languages. In this paper we show the $ \lambda $-definability of the built-in McCarthy functions as functions with indeterminate values of arguments. This result is necessary when translating typed functional programming languages into untyped functional programming languages.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

LACHHWANI, KAILASH. „FUZZY GOAL PROGRAMMING VS ORDINARY FUZZY PROGRAMMING APPROACH FOR MULTI OBJECTIVE PROGRAMMING PROBLEM“. International Journal of Modern Physics: Conference Series 22 (Januar 2013): 757–61. http://dx.doi.org/10.1142/s2010194513010982.

Der volle Inhalt der Quelle
Annotation:
This paper presents the comparison between two solution methodologies Fuzzy Goal Programming (FGP) and ordinary Fuzzy Programming (FP) for multiobjective programming problem. Ordinary fuzzy programming approach is used to develop the solution algorithm for multiobjective functions which works for the minimization of the perpendicular distances between the parallel hyper planes at the optimum points of the objective functions. Suitable membership function is defined as the supremum perpendicular distance and a compromise optimum solution is obtained as a result of minimization of supremum perpendicular distance. Whereas, In the FGP model formulation, firstly the objectives are transformed into fuzzy goals (membership functions) by means of assigning an aspiration level to each of them and suitable membership function is defined for each objectives. Then achievement of the highest membership value of each of fuzzy goals is formulated by minimizing the negative deviational variables.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Chadha, S. S. „Fractional programming with absolute-value functions“. European Journal of Operational Research 141, Nr. 1 (August 2002): 233–38. http://dx.doi.org/10.1016/s0377-2217(01)00262-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Junge, Oliver, und Alex Schreiber. „Dynamic programming using radial basis functions“. Discrete & Continuous Dynamical Systems - A 35, Nr. 9 (2015): 4439–53. http://dx.doi.org/10.3934/dcds.2015.35.4439.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Antczak, Tadeusz. „LIPSCHITZr-INVEX FUNCTIONS AND NONSMOOTH PROGRAMMING“. Numerical Functional Analysis and Optimization 23, Nr. 3-4 (09.01.2002): 265–83. http://dx.doi.org/10.1081/nfa-120006693.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Husain, Iqbal, Santosh K. Shrivastav und Abdul Raoof Shah. „On Continuous Programming with Support Functions“. Applied Mathematics 04, Nr. 10 (2013): 1441–49. http://dx.doi.org/10.4236/am.2013.410194.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Mukherjee, R. N., und S. K. Mishra. „Multiobjective Programming with Semilocally Convex Functions“. Journal of Mathematical Analysis and Applications 199, Nr. 2 (April 1996): 409–24. http://dx.doi.org/10.1006/jmaa.1996.0150.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Mukherjee, R. N. „Generalized Pseudoconvex Functions and Multiobjective Programming“. Journal of Mathematical Analysis and Applications 208, Nr. 1 (April 1997): 49–57. http://dx.doi.org/10.1006/jmaa.1997.5281.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Feinberg, Brion. „Coercion Functions and Decentralized Linear Programming“. Mathematics of Operations Research 14, Nr. 1 (Februar 1989): 177–87. http://dx.doi.org/10.1287/moor.14.1.177.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Schechter, M. „Polyhedral functions and multiparametric linear programming“. Journal of Optimization Theory and Applications 53, Nr. 2 (Mai 1987): 269–80. http://dx.doi.org/10.1007/bf00939219.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

van de Riet, R. P. „Logic programming functions, relations and equations“. Future Generation Computer Systems 3, Nr. 3 (September 1987): 218–19. http://dx.doi.org/10.1016/0167-739x(87)90015-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Prekopa, Andreas. „Stochastic programming with multiple objective functions“. European Journal of Operational Research 27, Nr. 2 (Oktober 1986): 260. http://dx.doi.org/10.1016/0377-2217(86)90078-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Terlaky, T. „Smoothing empirical functions by lp programming“. European Journal of Operational Research 27, Nr. 3 (Dezember 1986): 343–63. http://dx.doi.org/10.1016/0377-2217(86)90331-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Husain, I., Abha und Z. Jabeen. „On nonlinear programming with support functions“. Journal of Applied Mathematics and Computing 10, Nr. 1-2 (September 2002): 83–99. http://dx.doi.org/10.1007/bf02936208.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Husain, I., und Z. Jabeen. „On fractional programming containing support functions“. Journal of Applied Mathematics and Computing 18, Nr. 1-2 (März 2005): 361–76. http://dx.doi.org/10.1007/bf02936579.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Choo, E. U., und K. P. Chew. „Optimal value functions in parametric programming“. Zeitschrift für Operations Research 29, Nr. 1 (März 1985): 47–57. http://dx.doi.org/10.1007/bf01920495.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

CABALAR, PEDRO. „Functional answer set programming“. Theory and Practice of Logic Programming 11, Nr. 2-3 (04.02.2011): 203–33. http://dx.doi.org/10.1017/s1471068410000517.

Der volle Inhalt der Quelle
Annotation:
AbstractIn this paper we propose an extension of Answer Set Programming (ASP) to deal with (possibly partial) evaluable functions. To this aim, we start from the most general logical counterpart of ASP, Quantified Equilibrium Logic (QEL), and propose a variant QEL=ℱwhere the set of functions is partitioned into Herbrand functions (orconstructors) and evaluable functions (oroperations). We show how this extension has a direct connection to Scott'sLogic of Existence, and introduce several useful derived operators, some of them directly borrowed from Scott's formalisation. Using this general framework for arbitrary theories, we proceed to focus on a syntactic subclass that corresponds to normal logic programs with evaluable functions and equality. We provide a translation of this class into function-free normal programs and consider a safety condition so that the resulting program is also safe, under the usual meaning in ASP. Finally, we also establish a formal comparison to Lin and Wang's approach (FASP) dealing with evaluable total functions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Chang, Ching-Ter. „Fractional programming with absolute-value functions: a fuzzy goal programming approach“. Applied Mathematics and Computation 167, Nr. 1 (August 2005): 508–15. http://dx.doi.org/10.1016/j.amc.2004.07.014.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Singh, Vishnu Pratap. „On Solving Linguistic Bi-Level Programming Problem Using Dynamic Programming“. International Journal of Fuzzy System Applications 10, Nr. 1 (Januar 2021): 43–63. http://dx.doi.org/10.4018/ijfsa.2021010103.

Der volle Inhalt der Quelle
Annotation:
In this work, a linguistic bi-level programming problem has been developed where the functional relationship linking decision variables and the objective functions of the leader and the follower are not utterly well known to us. Because of the uncertainty in practical life decision-making situation most of the time, it is inconvenient to find the veracious relationship between the objective functions of leader, follower, and the decision variables. It is expected that the source of information which gives some command about the objective functions of leader and follower is composed by a block of fuzzy if-then rules. In order to analyze the model, a dynamic programming approach with a suitable fuzzy reasoning scheme is applied to calculate the deterministic functional relationship linking the decision variables and the objective functions of the leader as well as the follower. Thus, a bi-level programming problem is constructed from the actual fuzzy rule-based to the conventional bi-level programming problem. A numerical example has been solved to signify the computational procedure.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Cai, Yongyang, Kenneth L. Judd, Thomas S. Lontzek, Valentina Michelangeli und Che-Lin Su. „A NONLINEAR PROGRAMMING METHOD FOR DYNAMIC PROGRAMMING“. Macroeconomic Dynamics 21, Nr. 2 (18.01.2016): 336–61. http://dx.doi.org/10.1017/s1365100515000528.

Der volle Inhalt der Quelle
Annotation:
A nonlinear programming formulation is introduced to solve infinite-horizon dynamic programming problems. This extends the linear approach to dynamic programming by using ideas from approximation theory to approximate value functions. Our numerical results show that this nonlinear programming is efficient and accurate, and avoids inefficient discretization.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Zheng, Yingchun, und Xiaoyan Gao. „Sufficiency and Duality for Multiobjective Programming under New Invexity“. Mathematical Problems in Engineering 2016 (2016): 1–14. http://dx.doi.org/10.1155/2016/8462602.

Der volle Inhalt der Quelle
Annotation:
A class of multiobjective programming problems including inequality constraints is considered. To this aim, some new concepts of generalizedF,P-type I andF,P-type II functions are introduced in the differentiable assumption by using the sublinear functionF. These new functions are used to establish and prove the sufficient optimality conditions for weak efficiency or efficiency of the multiobjective programming problems. Moreover, two kinds of dual models are formulated. The weak dual, strong dual, and strict converse dual results are obtained under the aforesaid functions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Lai, H. C., und J. C. Liu. „Minimax fractional programming involving generalised invex functions“. ANZIAM Journal 44, Nr. 3 (Januar 2003): 339–54. http://dx.doi.org/10.1017/s1446181100008063.

Der volle Inhalt der Quelle
Annotation:
AbstractThe convexity assumptions for a minimax fractional programming problem of variational type are relaxed to those of a generalised invexity situation. Sufficient optimality conditions are established under some specific assumptions. Employing the existence of a solution for the minimax variational fractional problem, three dual models, the Wolfe type dual, the Mond-Weir type dual and a one parameter dual type, are constructed. Several duality theorems concerning weak, strong and strict converse duality under the framework of invexity are proved.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Ivanov, Vsevolod Ivanov. „Second-order invex functions in nonlinear programming“. Optimization 61, Nr. 5 (Mai 2012): 489–503. http://dx.doi.org/10.1080/02331934.2010.522711.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Mishra, S. K., und B. B. Upadhyay. „Nonsmooth minimax fractional programming involvingη-pseudolinear functions“. Optimization 63, Nr. 5 (29.05.2012): 775–88. http://dx.doi.org/10.1080/02331934.2012.689833.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Glover, B. M. „On Quasidifferentiable Functions and Non-Differentiable Programming“. Optimization 24, Nr. 3-4 (Januar 1992): 253–68. http://dx.doi.org/10.1080/02331939208843794.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Bector, C. R., S. Chandra und V. Kumar. „Duality for minmax programming involvingV-invex functions“. Optimization 30, Nr. 2 (Januar 1994): 93–103. http://dx.doi.org/10.1080/02331939408843974.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Li, X. F., J. L. Dong und Q. H. Liu. „Lipschitz B-Vex Functions and Nonsmooth Programming“. Journal of Optimization Theory and Applications 93, Nr. 3 (Juni 1997): 557–74. http://dx.doi.org/10.1023/a:1022643129733.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Sethuraman, Jay, Teo Chung Piaw und Rakesh V. Vohra. „Integer Programming and Arrovian Social Welfare Functions“. Mathematics of Operations Research 28, Nr. 2 (Mai 2003): 309–26. http://dx.doi.org/10.1287/moor.28.2.309.14478.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Umnov, A. E., und E. A. Umnov. „Using Feedback Functions in Linear Programming Problems“. Computational Mathematics and Mathematical Physics 59, Nr. 10 (Oktober 2019): 1626–38. http://dx.doi.org/10.1134/s0965542519100142.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

KOSHI, Shozo, Hang Chin LAI und Naoto KOMURO. „Convex programming on spaces of measurable functions“. Hokkaido Mathematical Journal 14, Nr. 1 (Februar 1985): 75–84. http://dx.doi.org/10.14492/hokmj/1381757690.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Nickel, Stefan, und Margaret M. Wiecek. „Multiple objective programming with piecewise linear functions“. Journal of Multi-Criteria Decision Analysis 8, Nr. 6 (November 1999): 322–32. http://dx.doi.org/10.1002/1099-1360(199911)8:6<322::aid-mcda260>3.0.co;2-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Köppe, Matthias, Christopher Thomas Ryan und Maurice Queyranne. „Rational Generating Functions and Integer Programming Games“. Operations Research 59, Nr. 6 (Dezember 2011): 1445–60. http://dx.doi.org/10.1287/opre.1110.0964.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Kharbanda, Pallavi, Divya Agarwal und Deepa Sinha. „Non-differentiable multiobjective programming under generalised functions“. International Journal of Operational Research 23, Nr. 3 (2015): 363. http://dx.doi.org/10.1504/ijor.2015.069627.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Bai, Fu-sheng, Lian-sheng Zhang und Zhi-you Wu. „General exact penalty functions in integer programming“. Journal of Shanghai University (English Edition) 8, Nr. 1 (März 2004): 19–23. http://dx.doi.org/10.1007/s11741-004-0005-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Broyden, C. G., und N. F. Attia. „Penalty functions, Newton's method, and quadratic programming“. Journal of Optimization Theory and Applications 58, Nr. 3 (September 1988): 377–85. http://dx.doi.org/10.1007/bf00939388.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Grimstad, Bjarne, und Brage R. Knudsen. „Mathematical programming formulations for piecewise polynomial functions“. Journal of Global Optimization 77, Nr. 3 (03.02.2020): 455–86. http://dx.doi.org/10.1007/s10898-020-00881-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Lai, H. C., J. C. Liu und S. Schaible. „Complex Minimax Fractional Programming of Analytic Functions“. Journal of Optimization Theory and Applications 137, Nr. 1 (18.12.2007): 171–84. http://dx.doi.org/10.1007/s10957-007-9332-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Yu. Danilin, M. „Sequential quadratic programming and modified lagrange functions“. Cybernetics and Systems Analysis 30, Nr. 5 (September 1994): 672–85. http://dx.doi.org/10.1007/bf02367748.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Chang, Ching-Ter. „Multi-choice goal programming with utility functions“. European Journal of Operational Research 215, Nr. 2 (Dezember 2011): 439–45. http://dx.doi.org/10.1016/j.ejor.2011.06.041.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie