Dissertationen zum Thema „Production des fibres de lin“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Production des fibres de lin" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Essid, Safa. „Sandwiches à fibres de lin et anas de lin : optimisation structure-imprégnation-propriétés“. Thesis, Normandie, 2020. http://www.theses.fr/2020NORMLH05.
Der volle Inhalt der QuelleFor different reasons including ecological ones, the weight reduction of structures and valorization of lignocellulosic biomass are considered as possible solutions towards ustainable innovation. In this context, the work of this thesis focuses on the manufacturing and optimization of sandwich structures with skins reinforced with flax fibers with mechanical, economic and environmental goals. A flax plant by-product called flax shives is valued by the development of agglomerated panels. These panels will serve as a core for the sandwich structures. To reach the optimization stage, experimental characterizations of the matrix and core materials are carried out first. Subsequently, joint work between the production processes and the desired properties of sandwich structures is undertaken. All the characteristics determined are compared with those of a non-bio-sourced reference material. Finally, analytical, graphic and numerical approaches are developed in order to answer the main question related to the optimization of the design of flax based sandwich structures with imposed rigidity and resistance to rupture. This optimization procedure should systematically control the desired characteristics of flax sandwiches
D'ANSELME, THIERRY. „Materiaux composites renforces par des fibres vegetales en particulier par des fibres de lin“. Rennes 1, 1997. http://www.theses.fr/1997REN10140.
Der volle Inhalt der QuelleLe, Hoang Tung. „Etude de caractérisation du comportement de composites cimentaires incorporant des fibres courtes de lin“. Caen, 2013. http://www.theses.fr/2013CAEN2042.
Der volle Inhalt der QuelleNowadays, a growing interest is focused on increasing the production of building materials incorporating vegetable fibers. In building material, flax is used in several forms: fibers, shives, etc. Their applications in the concrete are to improve the mechanical, thermal and sound insulation. Materials incorporating plant fibers are part of generic group called agro-materials. The production of cementitious composites with plant depends on a number of parameters such as the mixing ratios, mixing methods, manipulation techniques and mixtures which are very influential on the properties of the composites on the fresh and hardened state. This work, carried out in the Laboratory of Construction Material ESITC Caen and Laboratory of Crystallography of Materials (Crismat, UMR 6508) of Caen, involve in studying the role of flax fibers on the rheology of cement pastes, the microstructure and mechanical properties of composite. The parameters related to fibers are their morphology (length), their mechanical characteristics, their surface condition and their volume ratio. The thesis consists of five chapters. The first is a bibliographic study that present the characteristics of the most commonly used in eco-construction plant fibers with particular attention to the flax fiber. The properties of cement composites incorporating vegetable fibers are presented and discussed in terms of the nature and fiber ratio. Characterization of constituents of the cementitious matrix and fibers is presented in the second chapter. The formulation and preparation of cementitious composite materials are described in detail in order to give an overview on the methods of these materials in typical work. The third chapter focuses on the characterization of flax mortar. The analysis of consistency, setting time and dimensional variation was conducted in order to understand the effects of different mixing parameters and propose an optimization of the implementation. Physical characterization, mechanical and microstructural of flax fibers reinforced composite in the hardened state the subject of the fourth chapter. In the formulation of flax fibers reinforced concrete, the study of consistency on the fresh state and mechanical properties in the hardened state is presented in the fifth and final chapter. The conclusions recalls the main results of the study highlighting the complementarity of different methods and proposes investigation to complete the first work on building materials "flax fibers reinforced concrete. "
Qin, Yimin. „The production of fibres from chitosan“. Thesis, University of Leeds, 1990. http://etheses.whiterose.ac.uk/11299/.
Der volle Inhalt der QuelleAgboh, Ochayi Christopher. „The production of fibres from chitin“. Thesis, University of Leeds, 1986. http://etheses.whiterose.ac.uk/11256/.
Der volle Inhalt der QuelleRoudier, Agnès. „Analyse multi-échelle du comportement hygro-mécanique des fibres de lin“. Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2012. http://tel.archives-ouvertes.fr/tel-00741951.
Der volle Inhalt der QuellePomel, Catherine. „Contribution à l'étude de matériaux composites renforcés par des fibres de lin“. Nantes, 2003. http://www.theses.fr/2003NANT2029.
Der volle Inhalt der QuelleGirault, Raynald. „Caractérisation biochimique des polymères incrustant les parois secondaires des fibres de lin“. Rouen, 1999. http://www.theses.fr/1999ROUES055.
Der volle Inhalt der QuelleHuis, Rudy. „Régulation des « gènes lignine » chez le lin à fibres, Linum usitatissimum L“. Thesis, Lille 1, 2012. http://www.theses.fr/2012LIL10050.
Der volle Inhalt der QuelleFlax is an annual species cultivated for its fibers and seed oil. Flax bast fibers are traditionally used in textiles and since more recently, they are integrated in composite materials used in automobile and construction industries. These fibers are located between the epidermis and the secondary xylem. Their cell walls contain unusually low amounts of lignin (2 %) compared to more classical secondary cell walls (between 20 and 30 %). So we suggest the existence of a special regulatory control of lignification within these fibers. The same types of cell walls also exist in other bast fibers such as in hemp but also in the G-layer of tension wood. Flax is a suitable model to gain knowledge on the lignification process. The reason why the bast fibers are hypolignified is completely unknown and may be due to a regulatory control at the gene transcription level
Chilali, Abderrazak. „Étude expérimentale et modélisation de la durabilité des biocomposites à fibres de lin“. Thesis, Reims, 2017. http://www.theses.fr/2017REIMS003/document.
Der volle Inhalt der QuelleIn this thesis work, we study the durability of two twill flax fabrics reinforced thermosetting and thermoplastic composites. Firstly, the diffusion behaviour of these composites is investigated by identifying their 3D Fick’s and Langmuir’s diffusion parameters using an optimization algorithm. The influence of several geometric parameters and fibre orientation on their 3D moisture diffusion is also studied. Then, we analyse the effect of water ageing on their elastic and failure properties. Finally, a numerical finite element analysis is performed in order to study their diffusive and hydro-mechanical behaviour. The water diffusion parameters of the flax fibre and the used resins are estimated by a numerical inverse analysis exploiting experimental water uptake data. The heterogeneity of the studied composites is considered by modelling the twill weave fabrics undulation of their unit-cell. In particular, the mechanical behaviour of the unaged composites is found to exhibit a Kaiser effect contrary to the aged materials which exhibit a significant Felicity effect synonymous of substantial damage induced by water ageing. Besides, it is found that high mechanical stress concentrations are developed at the fibre-matrix interface, which could cause damage initiation and lead to the final composite failure
Capelle, Emilie. „Conception et fabrication de renforts tissés à base de fibres de lin pour la réalisation de pièces composites à géométries complexes“. Thesis, Orléans, 2015. http://www.theses.fr/2015ORLE2065.
Der volle Inhalt der QuelleThis work focuses on the weaving and forming of flax based reinforcements. Before being woven, naturalfibres on the form of finite length bundles (~ 30 mm in average for flax) need to be assembled together in a1D continuous product. The use of roving or slivers without twist is rather recommended for compositeapplications. In a first part, this study focuses on the manufacturing and the use of untwisted rovings treatedwith a bonding agent as well as on the weaving process parameters that may influence the mechanicalproperties and the textile characteristics of the woven fabric. Solutions to prevent roving defects duringweaving are proposed. In a second part, this study investigates the ability to develop composite parts with complex geometrieswithout defect. It focuses on the first step of RTM process which consists in forming dry fibrousreinforcements. An experimental approach is used to identify and quantify the defects. The buckling defectcaused by the bending of tows during the preforming step is particularly investigated. Solutions to realize acomplex shape such as a tetrahedron without any defect from flax based woven reinforcements areproposed. With optimized reinforcement architecture, buckling can be prevented. Another solutionconsisting in optimising the process parameters such as the blank holder geometry or the blank holderpressure to prevent the appearance of buckles from commercial fabrics was also investigated with success
Sundaram, Rajyashree Meenakshi. „Production, characterisation and properties of carbon nanotube fibres“. Thesis, University of Cambridge, 2012. https://www.repository.cam.ac.uk/handle/1810/244382.
Der volle Inhalt der QuelleBarbulée, Antoine. „Compréhension des effets du défibrage sur la morphologie, les propriétés et le comportement mécanique des faisceaux de fibres de lin : étude d'un cοmposite dérivé lin/époxyde“. Caen, 2015. http://www.theses.fr/2015CAEN2075.
Der volle Inhalt der QuelleFlax fibers show interesting mechanical and environmental properties that can promote their utilization for biocomposites. However, the use of plant fibers in structural composite materials is hindered by the lack of knowledge about their composition and structure at nanoscale firstly and secondly by the poor understanding of the relationship between the mode of production of the fibers, the mechanical behavior of the fiber bundles and the mechanical properties of the derived composites. Considering the morphological and microstructural characteristics of flax fibers, new experimental tools and numerical modelling are proposed for analyzing the mechanical properties of ultimate fibers, and then extended to the study of bundles and strands. An essential element of this approach is the ultimate link which assembly, governed by the laws of mechanics, allows better understanding the mechanical behavior of the fiber, in relation to the morphology at different scales, and the composites. This latest advance allows connecting the hydric behavior of flax fiber to residual drying stresses and explaining the effects of decortication treatments, since scutching up to stretching
Fehri, Meriem. „Comportements mécanique et hydrique des composites renforcés par des fibres naturelles et/ou conventionnelles“. Thesis, Normandie, 2018. http://www.theses.fr/2018NORMC215/document.
Der volle Inhalt der QuelleThis work aims to study the mechanical behavior of composites reinforced by flax fibers as well as the mechanical and water behavior of hybrid composites. A high porosity rate observed in these materials leads to a degradation of the mechanical properties. Tensile and buckling tests with acoustic emission monitoring have identified the mechanisms of damage that reign in these materials and highlight their chronology appearance. Microscopic observations of fracture facies validated these results. An optimization of the mechanical properties particularly in terms of reducing the porosity rate has been tested by inserting carbon fibers in the structure. The results showed that the position of carbon fibers is essential in the improvement of water and mechanical properties
Thuault, Anthony. „Approche multi-échelle de la structure et du comportement mécanique d'une fibre de lin“. Caen, 2011. http://www.theses.fr/2011CAEN2055.
Der volle Inhalt der QuelleThis PhD thesis deals with the understanding of the flax fibres structure at different scales and the studying of its mechanical behaviour. Indeed, in the context of sustainable development, using plant resources covers several fields of industrial applications including structural eco-composites. At first, seven varieties of flax fibres were compared in terms of morphology (diameter), biochemical composition and mechanical properties. Then, the structural study of the flax fibre dealt with the cell wall layers (number, thickness) and the microfibrils orientation in these layers. The analysis of the stress-strain curves obtained by uniaxial tensile test was used to estimate the elastic, viscoelastic and "plastic" contributions to the global behaviour of the fibre. The orthotropy of its mechanical behaviour has been demonstrated by nanoindentation testing. Finally, these data were used to identify the principal parameters that define the mechanical behaviour of the flax fibre. Thus, simulations of the mechanical behaviour of the fibre have been initiated to propose a phenomenological description
Roussière, Fabrice. „Contribution à l'étude d'un non-tissé de fibres végétales pour le renforcement de matériaux composites“. Lorient, 2010. http://www.theses.fr/2010LORIS171.
Der volle Inhalt der QuelleAmahzoune, El Mustapha. „Pyrolyse-flash et gazéification d'anas de lin“. Toulouse 3, 1987. http://www.theses.fr/1987TOU30296.
Der volle Inhalt der QuelleEnergetic valorization of flas straw by a thermic way is studied. A thermal treatement , flash pyrolysis, is realised under various flow of carrier gas, the emperature range being 700-1000°C ; in some cases a catalyst is used. In the first part, temperature and carrier gas flow, nitrogen, influence on gas composition is studied : high temperature favours flax straw decomposition into light gases. At 1000°C, and 1 l/min nitrogen flow, the gas composition is : hydrogen 29 %, carbon monoxyde 42 %, carbon dioxyde 11 %, methane 15 %, other hydrocarbon, C2, 3 % ; carbon gasified ratio is about 80 %. In the second part, pyrolysis-gasification is studied with a carrier gas containing oxygen (until reaching the air composition) ; carbon gasified ratio reaches 98 % (1000°C). With 02 % = 5 the Gross CalorificValue, GCV, of the pyrolysis gas is 16200 KJ/Nm3 at 900°C. Several catalysts have been used ; a steel specifically treated is particularly active : methane production is increased, 24 % at 900°C, and so is the GCV of the gas, 19400KJ/Nm3. Flash -pyrolysis of flax straw results are similar with those of cellulose and wood finely divided. By the side, comparison between classic carbonisation and flash pyrolysis shows the great efficiency of the thermic flash
De, Oca Balderas Horacio Montes. „Production and properties of oriented bioresorbable poly9glycolic acid) fibres“. Thesis, University of Leeds, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.515552.
Der volle Inhalt der QuelleHajj, Raymond. „Procédés de Modification des Fibres naturelles (PROMOF)“. Thesis, IMT Mines Alès, 2018. http://www.theses.fr/2018EMAL0005/document.
Der volle Inhalt der QuelleMany natural fibers have been used for a long time in textile industry as cotton and flax. Moreover, natural fibers are getting more importance in composites industry as a substitute for glass, carbon, or aramid fibers. However, they must be modified to overcome some disadvantages such as flammability, hydrophilicity and oleophilicity. In this work, phosphorus and fluoro-phosphorus flame retardants were grafted by e-beam radiation and chemical modification on flax fabrics to improve their flame retardancy, hydrophobicity and oleophobicity. The effect of chemical composition on grafting were also evaluated using miscanthus fibers in comparison to flax fabrics. The reactivity of the double bond C=C of the P-monomers was studied to control the grafting yield of various FRs. Radiation grafting steps were studied and controlled carefully. Grafting efficiency was assessed by X-ray fluorescence and Energy Dispersive X-Ray Analysis (EDX) / Scanning Electron Microscopy (SEM). Proton nuclear magnetic resonance was used to analyze the effect of irradiation on different monomers. Fire behavior of the modified fabrics was studied using thermogravimetric analysis, pyrolysis combustion flow calorimetry, cone calorimetry and a preliminary fire test. Flame retardant and oleophobic fabrics were successfully developed
Labache, Gaëlle. „Amélioration par modification chimique de l’interface de biocomposites poly(acide lactique) – fibre courtes de lin“. Caen, 2012. http://www.theses.fr/2012CAEN2004.
Der volle Inhalt der QuelleThis project is focused on the identification of chemical modifications to improve the interface quality of biocomposites elaborated from biopolymers and natural cellulosic fibers. The poly(lactic acid) matrix chosen for the project is presented in the first part with a special attention concerning the physical aging. The evolution of thermal (DSC) and mechanical properties (tensile testing) of PLA samples depending on the storage temperature highlight strengthening and weakening of PLA with storage time. This study demonstrates the necessity to clearfully expose the experimental procedures to measure these values. The influence of various surface treatments on the morphology and on the spectroscopic properties of flax fibers has been evaluated. Mercerisation and bleaching lead to the removal of waxes, pectins and hemicelluloses and reveal the cellulosic wall of the fibres. Coupled with acetylation, different satisfiying grafting ratio are obtained. However, the interfacial adhesion is not improved by the modified fibers in the pure PLA matrix through extrusion and injection molding. A second route by matrix chemical modification via reactive extrusion has thus been developped. Cardanol grafting onto PLA chains with the help of peroxides did not lead to the improvement of the interface quality. On the other hand, the addition of diisocyanates to the PLA-fibers systems significantly increases the adhesion between the matrix and the fibers. The obtained composites are more resistant than the pure PLA matrix. The reaction mechanism involves the creation of covalent bondings between the PLA and the flax fibers via the bifunctionnal diisocyanate
Addi, Mohamed. „Caractérisation fonctionnelle d'une beta-xylosidase de lin (Linum usitatissimum L.) : rôle(s) potentiel(s) dans le métabolisme pariétal“. Thesis, Lille 1, 2008. http://www.theses.fr/2008LIL10097/document.
Der volle Inhalt der QuelleFlax (Linum usitatissimum) has been a source of high quality fibers (bast fibers) for several thousand years. The fibers are currently used in the textile industry but also increasingly in the fabrication of composites. The interesting mechanical properties of these bast fibers depend upon the structure and chemical composition of their cell walls. ln order to improve our knowledge about the mechanisms underlying cell wall formation in flax fibers we produced ESTs from outer tissues, rich in fibers. Functional classification of ESTs allowed the identification of sequences coding a potential beta-xylosidase (LuBXL1). LuBXL1 down-regulated (IR-PTGS) plants did not show any visible phenotype. However, microscopie analysis suggested that down-regulation could have affected xylem cell wall structure. Enzymatic Fingerprinting indicated a relative increase in the relative quantity of the XXXG oligoxyloglucans in stem inner tissues of down-regulated lines, together with a relative decrease in the quantity of certain oligoxylans. These observations suggest that the down-regulation of LuBXL1 in flax is associated with modifications in cell wall hemicelluloses
Berges, Michael. „Mécanismes de dégradation sous sollicitations hydrothermomécaniques de biocomposites et renforts en fibres végétales : application au développement de mobiliers urbains ultralégers et mobiles“. Thesis, Bourgogne Franche-Comté, 2018. http://www.theses.fr/2018UBFCK053/document.
Der volle Inhalt der QuelleWith the current environmental concerns, research turns to alternative solutions to synthetic fibres. Vegetal fibers appears as good candidates, with good mechanical properties. However, their low durability is a major issue, especially when the composites are exposed to hydro(hygro)thermal loadings.The purpore of this thesis is to analyse and understand the degradation mechanisms when hydro-thermo-mechanical loadings are applied, in order to implement a predictive modelisation of the composite durability.The manufacturing process wasstudied and optimised to produce reproducible and strong composites. Two materials were produced. Their only difference is their volumetric fiber contents (37.7 % and 51.1 %).Experimental campaigns were led to characterize the composite mechanical behavior under different loadings. A hydrothermal ageing was studied through monotonic mechanical testing and cyclic mechanical testing (fatigue) with in situ immersion. A hydrothermal ageing was also studied in order to be closer to the aimed service conditions.These differents test campaigns showed an important loss of mechanical properties with the ageing processes. The volumetric fiber contents also showed almost no difference after the hydrothermal ageing. The industrial use of a high fiber content can then be questionned.After the first hygrothermal cycle, the composite mechanical elastic properties were found constant, which is reassuring for an industrial use. However, damages accumulated throughout the first 4 cycles before stabilizing.Fatigue results showed that the saturation can enhance the fatigue resistance below a certain maximal loading, which is very interesting for the aimed industrial use.A surfacic numeric modelisation was implemented with the evolution of the mechanical properties thoughout the diffusion process. This modelisation showed that the composite is mostly in compression, which is expected from the constrained swelling of the fibers within the resin, but also showed some developpement ideas which would be necessary to achieve an accurate predictive modelisation. Among these ideas, strong coupling between the diffusion process and the internal strains/stresses of the components.Numerous perspectives were discussed. Multiaxial loadings or breakage mode with impact or creep tests were mentionned. Moreover, the predictive modelisation that was aimed was not achieved yet, but amelioration axes were identified
Day, Arnaud. „La lignification des fibres périphloémiennes du lin (Linum usitatissimum L. ) : approches cytochimique, chimique et moléculaire“. Lille 1, 2004. https://ori-nuxeo.univ-lille1.fr/nuxeo/site/esupversions/591bb0bd-3841-4a7b-a571-f3cf36c2ba36.
Der volle Inhalt der QuelleEn outre, des lignines de type gai͏̈acyle-syTingyleont été identifiées en moindre quantité dans l'ensemble de la paroi secondaire. La quantification de ces lignines révèle une hypolignification marquée dans les fibres par rapport au bois. La caractérisation des lignines inscrustant les faisceaux fibreux du lin par thioacidolyse puis par oxydation alcaline par le nitrobenzène suggère la présence d'une lignine de type H-G-S possédant un très faible ratio S/G associé à un fort degré de condensation. Ces particularités des lignines des fibres de lin semblent s'accentuer au cours de leur maturation s'effectuant pendant quelques semaines après la floraison des plantes. La caféoyl-coenzyme A 3-O-Methyltransferase, CCoAOMT, est une enzyme clé de la voie de biosynthèse des lignines contrôlant leur synthèse et leur composition. Son étude a mis en évidence une corrélation positive entre i. L'expression du gène, ii. La présence de la protéine et iii. Son activité enzymatique, suggérant une régulation transcriptionnelle de cette enzyme. Par ailleurs, l'activité de cette enzyme et l'expression de ses gènes coi͏̈ncident avec les variations spatio-temporelles du dépôt des lignines dans les tiges. La production d'nne CCoAOMT recombinante a permis de tester in vitro la spécificité de substrat de cette enzyme. Ces analyses ont révélé l'implcation de la CCoAOMT dans la synthèse des unités gai͏̈acyles et syringyles proposannt ainsi une nouvelle voie dans la biosynthèse des monolignols
Gouanvé, Fabrice. „Comportement à l’eau d’un composite à matrice polyester insaturé renforcée par des fibres de lin“. Rouen, 2005. http://www.theses.fr/2005ROUES006.
Der volle Inhalt der QuelleNatural fibers have been used as structural materials since prehistoric times. Environmental concerns such as global warming, energy consumption, and the desire to obtain products from renewable sources has led to a resurgence of interest in plant-derived products. Plant fibers are very attractive for composite materials because the fibers have some interesting characteristics. For example, they are cost-effective, renewable, and available in high quantity, have low fossil-fuel energy requirements and can offer good mechanical properties. Natural fibers as flax have attracted attention because of their low cost compared with synthetics fibers such as glass, carbon. The application of flax fibers as reinforcements in composite materials requires a strong adhesion between the fiber and the synthetic matrix. The properties of the fiber-matrix interface are of great importance for the macroscopic mechanical properties. Physical and chemical treatments can be used to optimize this interface. In this study, an autoclave treatment and a cold plasma treatment have been carried out on the reinforcing fibers in order to increase moisture resistance and improve adhesion with the matrix respectively. The analysis of the permeation and mechanical results has shown that plasma treatment improves fiber/matrix adhesion while autoclave treatment reduces water solubility in the fibers. For reinforced composites, therefore, autoclave treatment is more efficient in terms of water permeability and plasma treatment gives better stiffness in terms of mechanical properties. This phenomenon was highlighted by SEM micrographs
Paul, Clément. „Impact des stratégies de compatibilisation sur les propriétés de composites polyéthylène – fibres courtes de lin“. Caen, 2015. http://www.theses.fr/2015CAEN2045.
Der volle Inhalt der QuelleThe goal of this thesis is to study the impact of compatilisation strategies on properties of composites reinforced by short flax fibres. Indeed, without any prior fibre treatment or matrix chemical modification, the reinforcement potential of flax is not achieved. Develop a better adhesion, modifying polarity in order to create chemical bonds between fibre and matrix, will thus allow to improve the mechanical properties of composites materials. Different strategies have been considered. On one hand, efficiency of several fibre treatments (bleaching, mercerisation, silanes) was compared. The chemical and morphological modifications brought to the fibres have been characterised so as the effect of their introduction within the composites materials. On the other hand, the incorporation of maleic anhydride grafted polyethylene (MA-g-PE) has enabled a clear improvement of the adhesion by the realisation of covalent bonds between fibre and matrix. A specific point has been brought to the optimisation of mercerisation treatment, which results in the highest mechanical resistance improvement of composites. Finally, the coupling of an optimised mercerisation and the use of MA-g-PE has allowed to obtain composites with tensile strength at yield above ones of composites treated with the two techniques taken separately or those of composites reinforced with the same mass of glass fibres owing a similar aspect ratio. The durability of those interfaces over accelerated ageing and recycling of those composites was also highlighted
Steadman, Stuart Charles. „The in-situ production of polyethylene fibres from polymer blends“. Thesis, Brunel University, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.277416.
Der volle Inhalt der QuelleKatsogiannis, Konstantinos A. G. „Single step production of nanoporous electrospun poly(ε-caprolactone) fibres“. Thesis, Loughborough University, 2016. https://dspace.lboro.ac.uk/2134/22929.
Der volle Inhalt der QuelleBrely, Julien. „Commande multivariable de filière de production de fibres de verre“. Grenoble INPG, 2003. http://www.theses.fr/2003INPG0146.
Der volle Inhalt der QuelleMorisse, Steven. „Effet du greffage de TiO2 à la surface de fibres de lin sur les propriétés mécaniques d'un composite PLA/fibre de lin longues unidirectionnelles“. Mémoire, Université de Sherbrooke, 2016. http://hdl.handle.net/11143/8934.
Der volle Inhalt der QuelleAcera, Fernandez José. „Modification of flax fibres for the development of epoxy-based biocomposites : Role of cell wall components and surface treatments on the microstructure and mechanical properties“. Thesis, Montpellier, 2015. http://www.theses.fr/2015MONTS218.
Der volle Inhalt der QuelleNatural fibres can be considered as a relevant alternative to glass fibres in the manufacture of composite materials. Indeed, they present interesting physical characteristics, such as low density and good specific mechanical properties, which can compete with glass fibre reinforced composites. Moreover, natural fibres are obtained from renewable resources, and generally present lower environmental impacts during their production and use phases and their end of life. Unlike glass fibres, natural fibres, such as flax fibres, are complex hierarchical materials composed essentially of cellulose, hemicellulose, lignin, peptics cements and lipophilic extractives (waxes, fatty acids, etc.). This composition varies among species, collection site, plant maturity, batches, etc. Besides, the biochemical composition and structure of flax products and sub-products undergo wide variations according to the transformation steps from stems to yarns and fabrics. This influences greatly the final properties of flax fibres and their biocomposites. The first part of this study is focused on the characterization of flax fibres during their successive transformation steps. A homogenization of the chemical composition is observed at the final transformation steps, as well as an increment of the longitudinal tensile properties of flax yarns. The second part deals with the use of different washing treatments applied on flax tow fabrics and their influence on the extraction of flax cell wall components and the resulting microstructure and mechanical properties of epoxy/flax fibres reinforced biocomposites. It is shown that cell wall components play a key role in the flax yarns and elementary fibres dispersion and transverse mechanical behaviour of biocomposites. Finally, the application of different functionalization treatments onto flax fibres fabrics is investigated in order to improve the interfacial adhesion between fibres and matrix. The use of non-bio-based organosilane molecules (aminosilane, epoxysilane) and bio-based molecules (amino-acids and polysaccharides) is studied. Improvedstiffness in longitudinal tension test and stiffness and tensile strength in transverse tension test are observed due to the improvement of interfacial adhesion by surface functionalization of the fibres with both bio-based and non-bio-based molecules
Goumghar, Amirouche. „Élaboration et étude des performances dynamiques de composite bio-sourcés à architecture hybride lin—verre“. Electronic Thesis or Diss., Reims, 2023. http://www.theses.fr/2023REIMS002.
Der volle Inhalt der QuelleThe use of natural fibre-reinforced composite materials is growing in various sectors such as automotive and packaging. However, the problem of their sensitivity to humidity still hinders their use in applications exposed to extreme environmental conditions. Therefore, the hybridization of natural fibres with synthetic fibres can constitute a promising way to improve some properties of natural fibre-reinforced composites. It is in this context that the present doctoral work is situated. It presents an experimental analysis of the tensile-tensile fatigue and low-energy impact fatigue behaviour of non-hybrid and hybrid flax-glass/epoxy laminates. An investigation of their durability after water aging until saturation is also presented. To this end, several plates of non-hybrid and hybrid flax-glass/epoxy composites have been fabricated by the vacuum infusion process. First, we carried out a monotonic tensile characterization of the studied composites and evaluated the kinetics of moisture diffusion within these materials. The results of these tests show that the addition of glass layers to the flax/epoxy laminate improves its mechanical properties and also reduces its mass of water absorbed at saturation. Then, cyclic fatigue tests were performed on unaged and aged composite specimens. These fatigue tests were coupled with the acoustic emission technique in order to identify the damage mechanisms and their chronology of appearance. To evaluate the effect of fatigue loading on the loss of stiffness, hysteresis loops and the damping factor of non-hybrid and hybrid composites were investigated. The analysis of the acoustic signals makes it possible to identify three classes of acoustic signals in all the studied composites. These three classes are attributed to the main damage mechanisms such as matrix cracking, fibre/matrix decohesion and fibre breakage. This attribution is supported by microscopic observations obtained using a scanning electron microscope. Finally, low-energy impact fatigue tests were performed on unaged and aged composite samples. The obtained results clearly show that the flax/epoxy composite absorbs a large part of the impact energy and transforms it into elastic energy. However, the glass/epoxy laminate consumes this energy in damage and breakage. In addition, water aging weakens all the studied composites and reduces their resistance to impact fatigue
Goubet, Florence. „Etude de la biosynthèse de polysaccharides pariétaux des fibres cellulosiques au cours du développement du lin“. Rouen, 1994. http://www.theses.fr/1994ROUES048.
Der volle Inhalt der QuelleGogoli, Komlavi. „Contribution à l'étude des faisceaux de fibres de lin : analyse des relations morphologie-comportement mécanique-ultrastructure“. Thesis, Normandie, 2022. https://tel.archives-ouvertes.fr/tel-03789637.
Der volle Inhalt der QuelleIn order to reduce the ecological impact of industrial processes, there is a growing interest in the industry for plant fibres. Indeed, in addition to being biodegradable, these fibres have remarkable mechanical properties, making them very competitive with synthetic fibres. However, the use of plant fibres is currently limited, in particular by the variability observed in their mechanical properties. In addition, these fibres have a non-linear mechanical behaviour that needs to be elucidated. In this context, this work proposes in a first part to study the influence of the morphology of flax fibre bundles on their mechanical behaviour. The results reveal a strong heterogeneity in the morphology and a dependence of the tensile mechanical behaviour on morphological parameters such as the twisting of the samples, the state of the middle lamellae or the cross-section. In a second part, an X-ray diffraction characterisation of the flax ultrastructure is proposed to improve the understanding of the non-linear mechanical behaviour of flax fibres. The use of the so-called combined analysis << structure/microstructure/texture >> approach for the X-ray diffraction data fit allows the determination of the Micro-Fibrillar Angle distribution and the shape of the cellulose crystallites. This method then made it possible to follow the evolution of the ultrastructure of flax fibres under tensile loading. Finally, this allowed us to propose a scenario that could explain the non-linear mechanical behaviour of flax fibres
Nlandu, Hervé Mayamba. „Extraction et prétraitement de fibres naturelles de lin par une approche enzymatique combinée au CO2 supercritique“. Doctoral thesis, Université Laval, 2019. http://hdl.handle.net/20.500.11794/35283.
Der volle Inhalt der QuelleThe main goal of this research was to set up an environmentally friendly process for the pretreatment of natural flax fibres in view to produce lignocellulosic nanofibers and modify their surface for their use as compatible fillers in polymer composites. To achieve this main objective, lignocellulosic nanosized flax fibres were prepared using an environmentally friendly process based on a combination of supercritical carbon dioxide pretreatment and enzymatic hydrolysis conditions. Supercritical CO2 pretreatment aimed to overcome the recalcitrance of lignocellulosic biomass and to provide access to hydrolytic enzymes. It was shown that the supercritical CO2 pretreatment of raw flax fibers helped to deconstruct biomass, avoiding its fractionation and increased access to hydrolytic enzymes such as cellulase, xylanase, pectinase and viscozyme leading to extraction of lignocellulosic fibres having nanometric dimensions. These extracted lignocellulosic nanofibres as well as the solid residues of the hydrolysis are hydrophilic in nature because of the attraction / interaction between the hydroxyl groups of the fibrous components and water molecules. The hydrophilic nature of these lignocellulosic nanofibers often results in poor compatibility with hydrophobic polymeric matrices. Surface modification is therefore necessary to make them more hydrophobic and compatible with the hydrophobic matrices. Laccase mediated grafting of natural phenolic compounds, i.e. guaiacol and syringaldehyde, onto lignocellulosic fiber was achieved, thus making lignocellulosic nanofibers and hydrolysis solids residues more hydrophobic and compatible with hydrophobic matrices. No significant changes in the chemical composition of flax fibres were observed after pretreatment. This was confirmedby FTIR analysis, which also demonstrated laccase-induced grafting of guaiacol and syringaldehyde onto lignocellulosic nanofibers and solid residues hydrolysis surfaces. Moreover, X-ray diffraction revealed that crystallinity increased for supercritical CO2 pretreated fibres as well asenzymatically produced lignocellulosic nanofibers. Scanning electron microscopy revealed the physical damages in the form of holes, cracks and erosions onto the surface of supercritical CO2 pretreated flax fibres, while transmission electron microscopy evidencedthe production of filament-shaped nanosized fibrils with a diameter of 5-10 nm and several micrometers length. Finally, bio-grafted fibers showed better thermal stability and hydrophobicity if compared to untreated raw analogues.
Musa, Corentin. „Élaboration et caractérisation de matériaux composites biosourcés à base de mucilage et de fibres de lin“. Thesis, Littoral, 2019. http://www.theses.fr/2019DUNK0535.
Der volle Inhalt der QuelleThe thesis was carried out in a context of development and valorisation of the flax through the conception of new bio-based composite materials made of mucilage and flax fibres. This work initially led to the synthesis of isosorbide epoxy and polyurethane precursors as an alternative to the conventional toxic precursors. For this, we proposed an original route for optimizing the synthesis of isosorbide diglycidyl ether (DGEI) using an ultrasonic process. Subsequently, the comparison of the conversion methods of epoxies into cyclic carbonates by the inclusion of CO₂ served as a basis for the development of an efficient protocol for converting DGEI into isosorbide cyclic carbonates (CCI) under moderate conditions of temperature and pressure. In the second part, the extraction of water-soluble compounds from the flaxseed allowed us to identify the complex structure of the mucilage and the effects of the extraction parameters on its physicochemical and thermal properties. Then, for the first time, oxidation of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) mucilage was successfully performed. After that, we have highlighted the enhanced efficiency of ultrasonic assisted oxidation over the conventional method when scaling up the process. In order to improve the fibre/matrix compatibility of natural fibre-based composites, different treatments of short flax fibres led to the individualizationof the fibres and to the improvement of the oxidation of sonicated fibres.These new materials allowed to formulate a series of novel biocomposites. The DGEI have been enhanced by making an amine-crosslinked resin reinforced with long flax fibres which have a comparable performance to oil-based composites. Additionally, the sonication of short flax fibres led to the improvement of the mechanical properties of PLA/Flax composite. The use of oxidized mucilage has demonstrated the beneficial aspects of flax mucilage incorporation into lightweight, compression-resistant composites
Zhuo, Nai-Jian. „Production and properties of weft-inserted warp knitted fabrics“. Thesis, University of Leeds, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.235814.
Der volle Inhalt der QuelleGourier, Clément. „Contribution à l’étude de matériaux biocomposites à matrice thermoplastique polyamide-11 et renforcés par des fibres de lin“. Thesis, Lorient, 2016. http://www.theses.fr/2016LORIS415/document.
Der volle Inhalt der QuelleThis thesis has been carried out as part of the project Fiabilin, which includes 15 different academic and industrial partners, with an aim to develop industrial production of polyamide-11/flax biocomposite. The purpose of this work is to determine multi-scale performances of 100% biosourced composite, in order to substitute composite materials containing glass fibers and/or matrix derived from petroleum. First, we highlighted the flax fiber sensibility toward processing cycles (time and temperature), from mechanical and biochemical structure aspects. Then, we revealed the capacity of PA11-flax association to produce competitive mechanical properties compared to others usual composites. Fiber-matrix interface of the biocomposite was studied at micro and macro scales, showing a higher compatibility than some flax-thermoset resin systems. The end-of-life of the biocomposite was considered by recycling with successive grinding and injections. Then stiffness and strength at break of short fiber biocomposites thus obtained are similar to PPgMA-flax composites, whereas a strong increase of the strain at break according to the number of injection cycles was observed. A life cycle analysis of some composites production steps shows lower environmental impacts of PA11-flax when sizing was made through equivalent material stiffness
Tissandier, Cédric. „Composites microcellulaires : production et caractérisation de structures asymétriques“. Doctoral thesis, Université Laval, 2014. http://hdl.handle.net/20.500.11794/25274.
Der volle Inhalt der QuelleSteinmetz, Johannes. „Nouvelles approches pour la production de fibres de nanotubes de carbone“. Montpellier 2, 2004. http://www.theses.fr/2004MON20060.
Der volle Inhalt der QuelleDoineau, Estelle. „Modification de fibres de lin par des nanocristaux de cellulose et du xyloglucane pour le développement de composites biosourcés hiérarchiques Adsorption of xyloglucan and cellulose nanocrystals on natural fibres for the creation of hierarchically structured fibres Hierarchical thermoplastic biocomposites reinforced with flax fibres modified by xyloglucan and cellulose nanocrystals Development of Bio-Inspired Hierarchical Fibres to Tailor the Fibre/Matrix Interphase in (Bio)composites“. Thesis, IMT Mines Alès, 2020. http://www.theses.fr/2020EMAL0007.
Der volle Inhalt der QuelleThis thesis project aims at developing flax fibres surface treatment for the improvement of the mechanical properties of biocomposites with polymeric matrix and flax reinforcements. This surface modification is inspired by the hierarchical structures present in biological systems (bone, nacre or wood), composed of nano-objects which allow a better transfer of loads in these materials. This presence of nano-sized objects makes it possible to reach impressive strength and toughness values and to limit cracks propagation. In this project, products derived from lingo-cellulosic biomass, namely cellulose nanocrystals (CNC) and xyloglucan (XG), were chosen for their interesting properties and mutual affinity to create hierarchical flax fibres. In a first step, the adsorption of XG and CNC onflax fibres w as localized and quantified using fluorescent markers. In addition, atomic force microscopy measurements of adhesive force revealed the creation of an extensible XG/CNC netw ork on the fibre surface. Subsequently, two paths were proposed with the elaboration of thermoplastic (polypropylene/flax fibres) and thermoset (epoxy resin/flax fabric) biocomposites using these nanostructured fibres. In both cases, an increase of the work of rupture has been measured by micro-and/or uniaxial tensile tests, allowing dissipating more energy upon breakage. All this work has allowed evaluating the potential of different hierarchical natural reinforcements (unidirectional fabric or short flax fibers) for the development of structural biocomposites with a focus on the fiber/matrix interphase zone
Migneault, Sébastien. „RECYCLAGE DES RÉSIDUS PAPETIERS POUR LA PRODUCTION DE PANNEAUX DE FIBRES“. Thesis, Université Laval, 2011. http://www.theses.ulaval.ca/2011/28402/28402.pdf.
Der volle Inhalt der QuelleCruz-Estrada, Ricardo Herbe. „In-situ production of electrically conductive polyaniline fibres from polymer blends“. Thesis, Brunel University, 2002. http://bura.brunel.ac.uk/handle/2438/2406.
Der volle Inhalt der QuelleHucker, Martyn John. „On the production and evaluation of hollow and novel glass fibres and their composites“. Thesis, University of Bristol, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.369526.
Der volle Inhalt der QuelleBalanger, Benoît. „Caractérisation des propriétés mécaniques de composites renforcés de fibres de lin fonctionnalisées par traitement au dioxyde de titane“. Mémoire, Université de Sherbrooke, 2014. http://hdl.handle.net/11143/5971.
Der volle Inhalt der QuelleHarirforoush, Mohammad Javad. „Effet de l'oxydation TEMPO des fibres de lin sur l'efficacité de greffage des agents de couplage silane“. Mémoire, Université de Sherbrooke, 2017. http://hdl.handle.net/11143/11507.
Der volle Inhalt der QuelleLes demandes des fibres naturelles comme matériaux de renforcement ont reçu beaucoup d'attentions et d'intérêts en raison de leurs avantages uniques tels que la dérivation directe de la terre, la durabilité, la dérivabilité, etc. En outre, l'emploi des fibres végétales comme matières premières dans l'ingénierie et les industries peut favoriser l'agriculture durable. La culture du lin oléagineux est passée de 600 000 à 800 000 hectares au cours des dernières années au Canada. Cela peut également constituer un excellent potentiel d'utilisation des déchets de lin (paille), 2 000 kg par an par année, en tant que matériaux de renfort dans l'industrie et promouvoir l'agriculture durable. Ces énormes quantités de résidus de lin sont généralement brûlées ou jetées, ce qui entraîne l'émission de CO2 dans l'atmosphère. Au cours des deux dernières décennies, l'emploi de fibres naturelles dans les biocomposites comme possibilité à l'élimination des résidus de lin a suscité beaucoup d'intérêt et d'attention. L'augmentation spectaculaire des publications au cours de cette période prend en charge ce fait. Cette attention et cet intérêt ont été attribués à la sensibilisation du public, aux restrictions légales et aux préoccupations environnementales associées aux fibres synthétiques. En outre, les avantages importants des fibres naturelles, comme la faible consommation de résine, l'usure des outils, l'efficacité des coûts; la disponibilité, l'environnement, la dégradabilité, la faible densité et les propriétés spécifiques élevés ont transformé la demande des fibres naturelles très favorable. Cependant, la nature hydrophile des fibres cellulosiques comme inconvénient principal les rend incompatibles avec des matrices polymères hydrophobes. Cette mauvaise compatibilité entre les fibres cellulosiques et les matrices polymères attribue principalement à la présence de groupes fonctionnels hydroxyles sur l'ossature des fibres de lin qui provoque des propriétés hydrophiles des fibres cellulosiques et une faible adhérence interfaciale entre les fibres cellulosiques et les matrices polymères. L'objectif principal de cette thèse de recherche est de convertir des groupes alcooliques primaires (OH) disponibles à la surface de la fibre de lin en groupes carboxylés par l'emploi d'un système d'oxydation TEMPO afin de faciliter le traitement du silane. Par la suite, les groupes carboxylés peuvent interagir plus facilement avec des agents de couplage au silane. La fonctionnalité de surface des fibres reçues et traitées a été caractérisée en utilisant la spectroscopie à infrarouge à transformer de Fourier et à la Spectrométrie photo électronique X. Un tensiomètre à angle de contact dynamique a été utilisé pour comparer la mouillabilité des fibres oxydées et non oxydées après le traitement au silane. L'interaction entre les fibres de lin et le polymère a été caractérisée en utilisant une microscopie électronique à balayage (MÉB). Les résultats indiquent que l'oxydation TEMPO a considérablement amélioré l'efficacité de liaison des agents de couplage silane sur la surface de la fibre. Ainsi, la compatibilité entre les fibres de lin et la résine époxy a été améliorée. En outre, l'absorption d'eau des fibres modifiées a été considérablement réduite, tandis que l'angle de contact des fibres de lin a été augmenté.
Chafei, Sawsen. „Influence de différents traitements sur les comportements rhéologique et mécanique d'un composite cimentaire mortier-fibres de lin“. Caen, 2014. http://www.theses.fr/2014CAEN2035.
Der volle Inhalt der QuelleThe objective of this study is to avoid catastrophic failure of a cement mortar incorporating flax fibers by conferring it an increasing resistance rising with the crack length. The implemented strategy is to improve the fiber-matrix compatibility by adapting the formulation by different treatments applied to fibers and / or matrix. In the first part of this study the effects of these treatments on fiber properties are evaluated by chemical, physical and mechanical characterization of the treated flax fibers versus raw fibers. The treatments applied to the cement matrix are also evaluated. The formulated mixtures, composed of treated fibers and / or matrix with additive were characterized in the fresh state to assess the impact of treatments on the consistency and the setting of the mixture, and the cement hydration. The last part of the work is devoted to analyzing the effects of these treatments on the microstructure, physical and mechanical properties of the cement composites
Ben, ameur Mariem. „Caractérisation mécanique et suivi par émission acoustique des mécanismes d’endommagement des composites à fibres hybrides lin/carbone“. Thesis, Le Mans, 2019. http://www.theses.fr/2019LEMA1039.
Der volle Inhalt der QuelleThe use of natural fibers as reinforcement makes it possible to improve the environmental performance of the composite materials as well as their damping properties. Nevertheless, these natural fiber composites have lower mechanical performance than synthetic fiber composites. In this context, this study proposes to develop composite structures with hybrid reinforcement made of flax and carbon fibers. The objective of this hybridization is to find a compromise between the mechanical and dissipative properties. First, the static behavior of flax fiber, carbon fiber and flax/carbon hybrid composites was analyzed. The principal elastic characteristics of a UD ply in plane stresses are thus determined. Moreover, a monitoring and an analysis of the mechanisms of damage were carried out by means of the technique of acoustic emission associated with microscopic observations. In order to better meet industrial needs, the behavior of composites subjected to cyclic fatigue tests must be studied. In fact, the fatigue behavior of these materials with non-hybrid and hybrid reinforcements was analyzed under tensile stress and three-point bending. The influence of hybridization on the fatigue life of these composites has been established. Finally, an experimental study and a finite element modeling of the vibratory behavior of non-hybrid and hybrid composites were carried out. Thus, the role of different fibers, fiber orientations, stacking sequences in vibration damping has been discussed
Pariot, Christine. „Implication des ions inorganiques dans la différenciation des fibres chez le lin : approche par microscopie ionique analytique“. Rouen, 1994. http://www.theses.fr/1994ROUES021.
Der volle Inhalt der QuelleBlum, Adrien. „Verticilliose sur lin fibre : avancées sur la compréhension de la maladie et l'élaboration de stratégies de lutte“. Rouen, 2016. http://www.theses.fr/2016ROUES034.
Der volle Inhalt der QuelleFiber flax (Linum usitatissimum L. ) is an important crop in Normandy, more than half of the French production is performed in this region. The products of this crop are included in the composition of multiple and innovative applications. However, fiber flax cultivation is often compromised by verticillium wilt, a disease caused by the fungal pathogen Verticillium dahliae Kleb. The fiber of infected plants becomes brittle and consequently difficult to upgrade, causing significant yield loss. Currently, there is no efficient method to control the pathogen. In the course of this work, researches were focused on the one hand, on the comprehension of the disease and on the other, on the development of control strategies. The development of V. Dahliae on fiber flax was studied by confocal microscopy and the amount of pathogen was quantified by real-time PCR. During asymtpomatic phase, the pathogen grown rapidly around the root epidermis then, V. Dahliae colonized the xylem vessels of roots. Between three and four weeks, the first foliar symptoms were observed. Over the following weeks, these symptoms progressed acropetally, subsequently causing defoliations and desiccations. Between six and eight weeks, the pathogen was spread in the xylem vessels of the aerial parts but the fibers were not contaminated. To fight against this destructive disease, two strategies have been developed. The first one was to detect if any resistance system exists in flax. Ve1-mediated resistance governed by the membrane receptor Ve1 or homologs has been already identified in tomato and other crops and stops the spread of V. Dahliae race 1. Homologs of tomato Ve1 were identified in the flax proteome. In silico analyses revealed that these homologs were close to Ve1. The second strategy was to supply a diagnosis in crop fields by quantifying the pathogen inoculum in soil. Accordingly, specific primers of V. Dahliae and sensitive at low DNA concentrations were designed. Then, a protocol for real-time PCR was improved for uses in soil. Analyzes in agricultural fields revealed intra-parcel heterogeneity of V. Dahliae and indicated the impact of agricultural practices on inoculum densities
Charlet, Karine. „Contribution à l'étude de composites unidirectionnels renforcés par des fibres de lin : relation entre la microstructure de la fibre et ses propriétés mécaniques“. Caen, 2008. http://www.theses.fr/2008CAEN2012.
Der volle Inhalt der QuelleThis doctoral dissertation deals with morphological and mechanical characteristics of flax fibres. Indeed, due to their lightness and their good mechanical properties, these fibres are considered as good alternatives for the glass fibres commonly used as reinforcement in polymer composites. At first, sections and longitudinal profiles of flax fibres were observed in order to determine their mean sizes and their scattering and to draw up an internal organisation scheme. Then, tensile tests were then performed on elementary fibres. Their mechanical behaviour displays a typical elasto-visco-plasticity as well as an initial non-linearity which has been attributed to an internal rearrangement of the cell wall constituents. The comparison with other natural fibres and the observation of fibre rupture surfaces allowed to corroborate this hypothesis. The study of fibres issued from two varieties and from different parts of the stems led to the conclusion that the median fibres exhibited optimal dimensions as well as higher mechanical properties than the apical or the basal ones. Finally, unidirectional composites made of flax fibres and polyester were processed by hand lay-up or by compression moulding, with several fibre volume fractions. They were tensile and flexural tested in order to determine their mechanical properties and their damage modes. The results show that flax fibres reinforced composites, in addition to their ecological benefit, are mechanically competitive compared to glass fibres reinforced composites