Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Processing of organic semiconducting thin films“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Processing of organic semiconducting thin films" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Processing of organic semiconducting thin films"
Harding, Cayley R., Jonathan Cann, Audrey Laventure, Mozhgan Sadeghianlemraski, Marwa Abd-Ellah, Keerthan R. Rao, Benjamin Sidney Gelfand et al. „Acid dyeing for green solvent processing of solvent resistant semiconducting organic thin films“. Materials Horizons 7, Nr. 11 (2020): 2959–69. http://dx.doi.org/10.1039/d0mh00785d.
Der volle Inhalt der QuellePickett, Alec, Aiswarya A. Mohapatra, Suman Ray, Christopher Robledo, Kartik Ghosh, Satish Patil und Suchismita Guha. „Interfacial Effects of UV-Ozone Treated Sol-Gel Processable ZnO for Hybrid Photodetectors and Thin Film Transistors“. MRS Advances 4, Nr. 31-32 (2019): 1793–800. http://dx.doi.org/10.1557/adv.2019.298.
Der volle Inhalt der QuelleThuau, Damien. „(Invited) Organic Thin Films Transistors: From Mechanical to Biochemical Sensors“. ECS Meeting Abstracts MA2022-02, Nr. 35 (09.10.2022): 1287. http://dx.doi.org/10.1149/ma2022-02351287mtgabs.
Der volle Inhalt der QuelleMaeda, Akihiro, Aki Nakauchi, Yusuke Shimizu, Kengo Terai, Shuhei Sugii, Hironobu Hayashi, Naoki Aratani, Mitsuharu Suzuki und Hiroko Yamada. „A Windmill-Shaped Molecule with Anthryl Blades to Form Smooth Hole-Transport Layers via a Photoprecursor Approach“. Materials 13, Nr. 10 (18.05.2020): 2316. http://dx.doi.org/10.3390/ma13102316.
Der volle Inhalt der QuelleGazioglu, Dilek Taskin, Fatih Dumludag, Mustafa Coskun und Savas Berber. „Fabrication and characterization of P3HT --- based OFETs with TPU --- polymeric gate dielectric prepared by electrospinning method with different thicknesses“. Физика и техника полупроводников 56, Nr. 7 (2022): 719. http://dx.doi.org/10.21883/ftp.2022.07.52767.9808a.
Der volle Inhalt der QuelleLkhamsuren, Enkhtur, und Galbadrakh Ragchaa. „Carrier mobility in field effect transistors based on copper-phthalocyanine thin films with different phase structure“. Физик сэтгүүл 15, Nr. 309 (15.03.2022): 17–22. http://dx.doi.org/10.22353/physics.v15i309.254.
Der volle Inhalt der QuelleMcCulloch, Iain, Clare Bailey, Kristijonas Genevicius, Martin Heeney, Maxim Shkunov, David Sparrowe, Steven Tierney et al. „Designing solution-processable air-stable liquid crystalline crosslinkable semiconductors“. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364, Nr. 1847 (22.08.2006): 2779–87. http://dx.doi.org/10.1098/rsta.2006.1854.
Der volle Inhalt der QuelleJones, Leighton, Xujun Luo, Algy Kazlauciunas und Long Lin. „A bifunctional smart material: the synthesis of a metal-free black pigment for optoelectronic applications from an organic semiconducting molecular rod“. Pigment & Resin Technology 47, Nr. 1 (02.01.2018): 14–28. http://dx.doi.org/10.1108/prt-02-2017-0014.
Der volle Inhalt der QuelleMirka, Brendan, Nicole Rice, Phillip Williams, Mathieu Tousignant, Nicholas Boileau, William Bodnaryk, Darryl Fong, Alex Adronov und Benoit Lessard. „Influence of Excess Conjugated Wrapping Polymer in Semiconducting Single-Walled Carbon Nanotube Dispersions“. ECS Meeting Abstracts MA2023-01, Nr. 10 (28.08.2023): 1214. http://dx.doi.org/10.1149/ma2023-01101214mtgabs.
Der volle Inhalt der QuelleIwamoto, Mitsumasa. „Nanometric electrostatic interfacial phenomena in organic semiconducting thin films“. Journal of Materials Chemistry 10, Nr. 1 (2000): 99–106. http://dx.doi.org/10.1039/a903004b.
Der volle Inhalt der QuelleDissertationen zum Thema "Processing of organic semiconducting thin films"
Liu, Xiao. „Elaboration and characterization of organic semiconducting thin films for optoelectronics“. Electronic Thesis or Diss., Sorbonne université, 2020. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2020SORUS205.pdf.
Der volle Inhalt der QuelleThis PhD work aims at the elaboration and characterization of organic semiconducting thin films based on different π-conjugated materials (DAL1, BTBT, C8-BTBT-C8, C10-PBT and iI(T2)2) for organic optoelectronics applications. The general goal is to optimize their fabrication methods in order to maximize their device performances of the corresponding optoelectronic devices (Organic field effect transistors and Organic light emitting diodes)
Al-Mohamad, Ali. „The preparation and measurement of organic thin films and applications to electronic devices“. Thesis, University of Salford, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.255247.
Der volle Inhalt der QuellePingel, Patrick. „Morphology, charge transport properties, and molecular doping of thiophene-based organic semiconducting thin films“. Phd thesis, Universität Potsdam, 2013. http://opus.kobv.de/ubp/volltexte/2014/6980/.
Der volle Inhalt der QuelleOrganische Halbleiter kombinieren die molekulare Vielfalt und Anpassbarkeit, die mechanische Flexibilität und die preisgünstige Herstellung und Verarbeitung von Kunststoffen mit fundamentalen Halbleitereigenschaften wie Lichtabsorption und -emission und elektrischer Leitfähigkeit. Unlängst finden organische Leuchtdioden Anwendung in den Displays von TV-Geräten und Smartphones. Für die weitere Entwicklung und den Erfolg organischer Halbleiter ist das Verständnis derer physikalischer Grundlagen unabdingbar. Ein für viele Bauteile fundamentaler Prozess ist der Transport von Ladungsträgern in der organischen Schicht. Die Ladungstransporteigenschaften werden maßgeblich durch die Struktur dieser Schicht bestimmt, z.B. durch den Grad der molekularen Ordnung, die molekulare Verbindung von kristallinen Domänen und durch Defekte der molekularen Packung. Mittels optischer Spektroskopie werden in dieser Arbeit die temperatur-, molekulargewichts- und lösemittelabhängigen Struktureigenschaften poly- und oligothiophenbasierter Schichten untersucht. Dabei basiert die Analyse der Absorptionsspektren auf der Zerlegung in die spezifischen Anteile geordneten und ungeordneten Materials. Es wird gezeigt, dass sich hohe Ladungsträgerbeweglichkeiten dann erreichen lassen, wenn der Anteil der geordneten Bereiche und deren molekulare Verbindung in den Schichten möglichst hoch und die energetische Unordnung in diesen Bereichen möglichst klein ist. Der Ladungstransport in organischen Halbleitern kann außerdem gezielt beeinflusst werden, indem die Ladungsträgerdichte und die elektrische Leitfähigkeit durch molekulares Dotieren, d.h. durch das Einbringen von Elektronenakzeptoren oder -donatoren, eingestellt werden. Obwohl der Einsatz dotierter Schichten essentiell für effiziente Leuchtdioden und Solarzellen ist, ist der Mechanismus, der zur Erzeugung freier Ladungsträger im organischen Halbleiter führt, derzeit unverstanden. In dieser Arbeit wird der Ladungstransfer zwischen dem prototypischen Elektronendonator P3HT und dem Akzeptor F4TCNQ untersucht. Es wird gezeigt, dass, entgegen verbreiteter Vorstellungen, fast alle F4TCNQ-Akzeptoren einen ganzzahligen Ladungstransfer mit P3HT eingehen, aber nur 5% dieser Paare dissoziieren und einen beweglichen Ladungsträger erzeugen, der zur elektrischen Leitfähigkeit beiträgt. Weiterhin wird gezeigt, dass die zurückgelassenen F4TCNQ-Akzeptorionen Fallenzustände für die beweglichen Ladungsträger darstellen und so die Ladungsträgerbeweglichkeit in P3HT bei schwacher Dotierung absinkt. Die elektrischen Kenngrößen Ladungsträgerkonzentration, Beweglichkeit und Leitfähigkeit von F4TCNQ-dotierten P3HT-Schichten werden in dieser Arbeit erstmals in weiten Bereichen verschiedener Akzeptorkonzentrationen untersucht.
Hassan, Aseel Kadhim. „Studies in electronic conduction processes in organic semiconducting thin films of copper phthalocyanine prepared by evaporation“. Thesis, Keele University, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.306847.
Der volle Inhalt der QuelleRoodenko, Ecatherina. „Surface and interface structure of electrochemically grafted ultra-thin organic films on metallic and semiconducting materials“. Berlin mbv, 2008. http://d-nb.info/989679683/04.
Der volle Inhalt der QuelleShihub, Salahedin Ibrahim. „Studies of the electrical and structural properties of organic semiconducting thin films of thermally evaporated cobalt phthalocyanine“. Thesis, Keele University, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.301164.
Der volle Inhalt der QuellePingel, Patrick [Verfasser], und Dieter [Akademischer Betreuer] Neher. „Morphology, charge transport properties, and molecular doping of thiophene-based organic semiconducting thin films / Patrick Pingel. Betreuer: Dieter Neher“. Potsdam : Universitätsbibliothek der Universität Potsdam, 2014. http://d-nb.info/1049328426/34.
Der volle Inhalt der QuelleKulkarni, Sachin Shashidhar. „Effect of composition, morphology and semiconducting properties on the efficiency of CuIn₁₋x̳Gax̳Se₂₋y̳Sy̳ thin-film solar cells prepared by rapid thermal processing“. Orlando, Fla. : University of Central Florida, 2008. http://purl.fcla.edu/fcla/etd/CFE0002467.
Der volle Inhalt der QuelleChang, Mincheol. „Processing parameter effects on the molecular ordering and charge transport of poly(3-hexylthiophene) thin films“. Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/54281.
Der volle Inhalt der QuelleHuq, Abul Fatha Md Anisul. „Interfacial and Solvent Processing Control of Phenyl-C61-Butyric Acid Methyl Ester (PCBM) Incorporated Polymer Thin Films“. University of Akron / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=akron1427746818.
Der volle Inhalt der QuelleBücher zum Thema "Processing of organic semiconducting thin films"
McGuiness, C. L., R. K. Smith, M. E. Anderson, P. S. Weiss und D. L. Allara. Nanolithography using molecular films and processing. Herausgegeben von A. V. Narlikar und Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533060.013.23.
Der volle Inhalt der QuelleBuchteile zum Thema "Processing of organic semiconducting thin films"
Park, Hui Joon, und L. Jay Guo. „Processing Technologies of Semiconducting Polymer Composite Thin Films for Photovoltaic Cell Applications“. In Semiconducting Polymer Composites, 171–90. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527648689.ch6.
Der volle Inhalt der QuelleKarimov, Khasan, Stefano Bellingeri und Yoshiyuki Abe. „Physical Vapor Transport of CuPc Organic Thin Films in High Gravity“. In Processing by Centrifugation, 99–106. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-0687-4_13.
Der volle Inhalt der QuelleNiesen, Thomas P., Joachim Bill und Fritz Aldinger. „Deposition of Titania Thin Films on Different Functionalized Organic Self-Assembled Monolayers“. In Ceramics - Processing, Reliability, Tribology and Wear, 289–94. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527607293.ch49.
Der volle Inhalt der QuelleHan, Dae-Hee, und Byung-Eun Park. „Paper Transistors with Organic Ferroelectric P(VDF-TrFE) Thin Films Using a Solution Processing Method“. In Topics in Applied Physics, 291–305. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1212-4_14.
Der volle Inhalt der QuelleBao, Z., und J. A. Rogers. „Thin-film Transistors From Organic Semiconducting Materials, Processing Technologies for“. In Encyclopedia of Materials: Science and Technology, 9319–23. Elsevier, 2001. http://dx.doi.org/10.1016/b0-08-043152-6/01680-6.
Der volle Inhalt der QuelleDziike, Farai, Phylis Makurunje und Refilwe Matshitse. „Biomass Electrospinning: Recycling Materials for Green Economy Applications“. In Electrospinning - Material Technology of the Future [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.103096.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Processing of organic semiconducting thin films"
Case, William E. „Properties and applications of thin-film phase transition materials“. In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1985. http://dx.doi.org/10.1364/oam.1985.thn1.
Der volle Inhalt der QuelleKo, Seung Hwan, Heng Pan, Costas P. Grigoropoulos und Dimos Poulikakos. „Air Stable High Resolution OFET (Organic Field Effect Transistor) Fabrication Using Inkjet Printing and Low Temperature Selective Laser Sintering Process“. In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-15038.
Der volle Inhalt der QuelleBelfield, Kevin, Xiaobin Ren, David J. Hagan, Eric W. Stryland, Vladislav Dubikovsky und Edward J. Miesak. „Two-photon photoinitiated polymer processing and microfabrication“. In Organic Thin Films. Washington, D.C.: OSA, 1999. http://dx.doi.org/10.1364/otf.1999.sub2.
Der volle Inhalt der QuelleKearns, Patrick, Aaron Massari und Zahara Sohrabpour. „MIXED POLARIZATION VIBRATIONAL SUM FREQUENCY GENERATION SPECTRA OF ORGANIC SEMICONDUCTING THIN FILMS“. In 69th International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2014. http://dx.doi.org/10.15278/isms.2014.tb09.
Der volle Inhalt der QuelleVidelot-Ackermann, Christine, Jorg Ackermann, Hugues Brisset, Pascal Raynal, Fabrice Moggia, Frederic Fages, Koji Kawamura und Noriyuki Yoshimoto. „Conducting and semiconducting end-capped oligothiophenes for thin films devices in organic electronics“. In IECON 2006 - 32nd Annual Conference on IEEE Industrial Electronics. IEEE, 2006. http://dx.doi.org/10.1109/iecon.2006.347818.
Der volle Inhalt der QuelleKrueger, Joerg, und Wolfgang Kautek. „Femtosecond-pulse laser processing of metallic and semiconducting thin films“. In Photonics West '95, herausgegeben von Jan J. Dubowski. SPIE, 1995. http://dx.doi.org/10.1117/12.206276.
Der volle Inhalt der QuelleSchoonderbeek, Aart, Maik Bärenklau, Roland Rösch, Burhan Muhsin, Oliver Haupt, Harald Hoppe, Dieter Teckhaus und Uwe Stute. „Laser structuring of thin films for organic solar cells“. In ICALEO® 2010: 29th International Congress on Laser Materials Processing, Laser Microprocessing and Nanomanufacturing. Laser Institute of America, 2010. http://dx.doi.org/10.2351/1.5061964.
Der volle Inhalt der QuelleBenight, Stephanie J., Scott R. Hammond, Lewis E. Johnson und Delwin L. Elder. „Processing of organic electro-optic materials for commercial applications“. In Nanoengineering: Fabrication, Properties, Optics, Thin Films, and Devices XVII, herausgegeben von Wounjhang Park, André-Jean Attias und Balaji Panchapakesan. SPIE, 2020. http://dx.doi.org/10.1117/12.2569081.
Der volle Inhalt der QuelleNunzi, Jean-Michel, Stephane Delysse, Nicola Pfeffer und Fabrice Charra. „Organic Thin-Films For Spatial Light Modulation“. In Organic Thin Films for Photonic Applications. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/otfa.1995.mc.4.
Der volle Inhalt der QuelleYamamoto, Tsuyoshi, Shigehiro Teramoto, Akihiro Tagaya, Eisuke Nihei, Takeshi Kinoshita, Yasuhiro Koike, Keisuke Sasaki und Kazuhito Fujii. „Organic Dye-Doped Polymer Optical Fiber Amplifier“. In Organic Thin Films for Photonic Applications. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/otfa.1993.wb.4.
Der volle Inhalt der Quelle