Dissertationen zum Thema „Procédé hydrothermal“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-20 Dissertationen für die Forschung zum Thema "Procédé hydrothermal" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Nzogo, Metoule Christ Terence. „Etude d'un procédé hydrothermal dédié aux traitements des déchets amiantés“. Thesis, Aix-Marseille, 2019. http://theses.univ-amu.fr.lama.univ-amu.fr/190711_NZOGOMETOULE_612c481lcr95idp450z_TH.pdf.
Der volle Inhalt der QuelleThe aim of this work is to demonstrate feasibility of asbestos (chrysotile, amosite, crocidolite) and asbestos cement tile deactivation in non-hazardous material by using supercritical hydrothermal treatment (400 ≤ T ≤ 750°C and P ≥ 21 MPa). Experiences were carried out on a high pressure (30 MPa) and temperature (800°C) Inconel batch reactor. The temperature, duration of treatment and initial concentration for asbestos conversion observed on XRD, were obtained from parametric study (T=750°C, t ≥ 1h et C ≥ 2.10-2 mg.mL-1). Tests lab have shown us conversion (XRD, TEMA) of chrysotile and asbestos cement tile in forsterite which evolve in enstatite and calcite, gehlenite and spurrite mixture respectively after 1h treatment duration. For the same duration, crocidolite fibers are not detected after 3h treatment for samples of 2.10-2 mg.mL-1 (TEMA), while crocidolite crystalline are still present (XRD) when concentration is 20 mg.mL-1 for the same treatment duration. No effect was observed on the amosite crystalline structure. But persistence of micro particular form (elongated structure) of 200 to 400 nm and longer than 5 µm on all by-products are observed. Ultrasound post-treatment is applied to fragment elongated structure. SEM analysis applied by using particle counting method shown a reduction from 27 µm to 6 µm after ultrasound post-treatment
Ndayishimiye, Arnaud. „Sur un nouveau procédé de frittage de céramiques à basse température : le frittage hydrothermal. Développement et approche mécanistique“. Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0889/document.
Der volle Inhalt der QuelleThe development of new high performance advanced materials is strongly dependent on the mastering of sintering processes. The driving force for densification is the decrease of surface free energy, which can be promoted either by applying a pressure and/or by enhancing diffusional mechanisms in a solid or liquid phase with ultra-fast heating routes. High temperatures are then usually required in the as-involved processes. The challenge is to perform densification at low temperature in order to overcome current technological barriers (energy- and cost-efficiency of the process; sintering of metastable, low temperature decomposition and/or nanometric materials; cosintering of multimaterials). In this context, we have developed an innovative hydrothermal sintering process which is geologically-inspired: a powder mixed with water is externally and mechanically compressed under hydrothermal conditions over short time periods. The main driving force is the stress gradient within grains induced by external uniaxial compression which allows the activation of the dissolution/precipitation phenomenon at solid/liquid interfaces. Besides the technological development of the apparatus, our goal was to understand all the complex mechanisms involved in the hydrothermal sintering of a model material, nanometric silica. We have shown that the mechanical-chemical effects (pressure solution creep) were synergistically assisted by chemical ones (polycondensation). The influence of each parameter (temperature, pressure, time, heating rate, solvent amount, use of a co-solvent or of a mineralizer) were investigated. Consequently, the densification of silica was optimized, reaching 86-88% of relative density. In addition, bulk polycrystalline nanometric α -quartz with 98% of relative density was obtained. Finally, the hydrothermal sintering process has been implemented to densify complex multimaterials. In this way, 0-3 type nanocomposites where nanometric manganese perovskite are embedded in a silica matrix have been obtained. The advantage of nanostructuration on magnetotransport properties was evaluated
Missaoui, Ayoub. „Etude de la conversion de la biomasse en energie par un procédé hydrothermal de carbonisation - Caractérisation des produits issus des grignons d'olive“. Thesis, Orléans, 2018. http://www.theses.fr/2018ORLE2039/document.
Der volle Inhalt der QuelleHydrothermal carbonization (HTC) allows pre-treating humid biomass in subcritical water (180-250°C) and at low pressures (10-40 bars) in the absence of air. This process produces a carbonaceous solid material called "hydro-char". The main aim of this work is to optimize the HTC process by studying the potential of hydro-char to produce energy. The studied biomass is a by-product of the olive oil industry called olive pomace containing water, residual oil, olive skin, olive pulp, and olive stones (with 70% moisture content). The moroccan olive pomace was first air-dried (DOP) and characterized. During the HTC process, the biomass is decomposed via dehydration and decarboxylation reactions. The obtained hydro-char has much less moisture and higher carbon contents than that of untreated DOP. Also, the hydro-char becomes poor in ashes by transferring them into the liquid phase. Hydro-chars have a higher HHV than that of peat and lignite. The results show that hydro-char mass yield and its properties depend on the process temperature especially. For a better analysis of the effect of operating conditions, a Design of Experiments Response Surface Methodology (DoE/RSM) approach was applied to optimize the HTC process. The DoE/RSM allows identifying a relationship between hydro-char properties and its mass yield and thermal combustion behavior. Response-surface plots show defined areas of production of hydro-char which allows tailoring hydro-char elaboration to a specific application. The process liquid from the HTC treatment of DOP shows a sensibility to operating conditions. The soluble carbon in the HTC liquid increases its polluting power and to decrease it two treatment process have been tested: evaporation and wet oxidation. Finally, the results show that the amount of water used for the hydrothermal treatment is the most influential factor on the energy balance of the HTC process
Jeder, Asma. „Matériaux carbonés par voie hydrothermale à partir de noyaux d'olive : étude du procédé, caractérisation des produits et applications“. Thesis, Université de Lorraine, 2017. http://www.theses.fr/2017LORR0219/document.
Der volle Inhalt der QuelleHydrothermal carbonization process uses green waste from municipalities (Wood chips, sewage sludge, bagasse, leaves …) to produce solid bio-coal. The solid HTC product known as hydrochar commonly used as a fuel or fertilizer but it could be converted also into high- value products like activated carbon. The principal purpose of this thesis is to study the conversion of olive stones, widely available lignocellulosic biomass in Tunisia and Mediterranean country, into hydrochar and then activated carbon. In this study, a laboratory scale batch reactor has been designed and built. The hydrothermally carbonized olive stones were prepared at different reaction severity and with addition of salts, acid or ammonia. All prepared hydrochar are characterized by different analysis methods. The HTC water was also analyzed and the results show that HTC-liquid contains high added value components such as furfural and 5-HMF. The hydrothermally carbonized olive stones were activated by both physical activation, using CO2 and chemical activation, using KOH. The materials had high surface area (as high as 1400 m2 g-1) and rich surface chemistry. The potential for pharmaceuticals (Ibuprofen and Metronidazole) and hydrogen adsorption were assessed for HTC-activated carbon and they showed good performance in both application
Chouet, Agathe. „Fabrication des tuiles apéritives : étude des interactions formulation – structure – propriétés physico-chimiques en lien avec le procédé“. Thesis, Nantes, Ecole nationale vétérinaire, 2019. http://www.theses.fr/2019ONIR124F.
Der volle Inhalt der QuelleRestructured chips are made from a fried sheeted dough whose characteristics largely depend on the variability of the dehydrated potato which is the main raw material. In order to overcome these variations, it is essential to understand the role of the ingredients on the structure development during frying and on the resulting physicochemical and organoleptic properties. The role of added starch in the product was studied and highlighted the link between added starch and the dough aspect, physicochemical characteristics and structure of the final product. Native starch promotes an expanded, smooth, porous, brittle product with a lower fat content.The evolution of the product during frying process was studied: the physicochemical and structural characteristics of the product were found to be highly dependent on the glass transition.A frying time was determined for which the glass transition temperature was the same as the ambient temperature. For this frying time, the textural and structural properties acquired by the product during the cooling step change drastically. This work was carried out on a pilot equipment specially designed for this purpose and then adapted at an industrial scale to validate previous conclusions and provide information for the control of production lines. It does highlight the importance of the formulation in the manufacture and the product quality as well as the importance of the frying parameters in the chemical (water and fat content), physical (texture, global aspect), and structural properties (expansion, porosity) of the final product
Lopes, Moriyama Andre Luis. „Elaboration de poudres de CoFe2O4 nanostructurées et hiérarchisées ˸ : influence de la morphologie sur la détection et l'oxydation catalytique de gaz polluants“. Electronic Thesis or Diss., Toulon, 2014. http://www.theses.fr/2014TOUL0023.
Der volle Inhalt der QuelleThis work deals with the synthesis and characterization of new materials, more sensitive and more selective, for the detection of pollutants gases. The electric or catalytic response of a sensing material depend on many factors like the grain size, the exposed crystallographic facets, the nature and valence of cations, the presence of oxygen vacancies. The aim of this thesis is the synthesis and characterization on one oxide with different shape in order to study their influence on the detection and catalytic properties of the sensing material. Cobalt ferrite, CoFe2O4 was synthesized by hydrothermal and solvothermal routes. The powders were characterized by thermogravimetric analyses (TGA), X rays diffraction (XRD), transmission electron microscopy (TEM) coupled with energy dispersive spectroscopy (EDS). The testes gases were nitrogen dioxide NO2 and carbon monoxide CO.Nano-octahedron,as small as 20 nm, were obtained by a hydrothermal route, after optimization of temperature, reaction time, and PH of the solutions. The use of cetyltrimethylammonium bromide (CTAB) as a surfactant leads to high purity powders. The grain shape is controlled by the precipitating agent and OH- ions in the reaction medium. Measurements of the electric response of the sensing material show that the grains shape definitively influences the sensitivity as well as the time response of the sensing material. Under oxidative gas (NO2), nanooctahedra of CoFe2O4 have a significantly higher sensibility than grains of same mean size, but without particular shape, as well as much shorter response and recovery times. This higher reactivity is linked to the {111} crystallographic facets, which exhibit octahedral sites. Nanooctahedra of CoFe2O4 showed also good catalytic activity toward the oxidation of CO. Reaction speeds (by specific area unit) are higher for nanooctahedra than for grains with no particular shape.A spherical hierarchical structure of nanooctahedra was obtained by adsorption of the grains at the surface of carbon spheres 200 nm in diameter, followed by their calcination at 350°C
Daher, Elias. „Conception de nouvelles nanostructures de ZnO pour une dégradation photocatalytique améliorée des polluants organiques“. Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS320.
Der volle Inhalt der QuelleWith a continuously growing global industrialization reaching 6.1% in 2021 and a demographic burden of 8 billion people, today’s world is facing the most extensive energy shortages and environmental pollution in its history. Particularly, loaded effluents with recalcitrant organic toxic molecules from refineries, petrochemicals, pharmaceuticals, plasticizers, and many other industries, are continuously endangering surface and groundwater water sustainability. With the low efficiency of conventional treatment techniques in addressing this issue, advanced oxidation processes have emerged as an efficient, promising, and inexpensive technology, capable of tackling different types of organic molecules in aquatic mediums. Amongst these techniques, heterogeneous photocatalysis has emerged as one of the most efficient and economical methods due to the photocatalyst reusability and lack of secondary disposal requirements. The technique is based on the generating of highly reactive oxygen species (ROS) such as hydroxyl radical and superoxide radical upon the exposure of a photocatalyst material to light, making it a green and sustainable technology. These ROS are well-known for their strong oxidation capacity toward organic matter, leading to their mineralization into harmless molecules such as water and carbon dioxide. For that reason, developing an efficient and eco-friendly photocatalyst is of great importance. In this scope, Zinc oxide (ZnO) has been attracting high attention due to its high conversion efficiency of photonic energy, low production price, low degree of toxicity to marine/human life, and long life span. Nonetheless, one of the main challenges facing this material is the limited photocatalytic efficiency due to the recombination of electron-hole pairs. Therefore, new strategies have been developed to enhance its photocatalytic activity such as designing new micro/nanostructures of ZnO or coupling the photocatalysts with other treatment techniques to produce synergic effects
Boucard, Hélène. „Contributions to the understanding of hydrothermal processes : application to black liquor“. Thesis, Ecole nationale des Mines d'Albi-Carmaux, 2014. http://www.theses.fr/2014EMAC0018/document.
Der volle Inhalt der QuelleBlack liquor, a by-product of paper industry, is converted by hydrothermal process. It was chosen for its high water content (80 wt%), organic material (14 wt%) and minerals (6 wt%) that make it a high-value biomass while still untapped. The study in batch, screening a wide temperature range (350°C-600°C), used to identify two outgoing flows: a high proportion of hydrogen in the gas phase (600°C) and a solid phase, called coke, generated regardless the operating conditions used. The generation of solid changes the composition of the reaction medium in batch process and can be problematic in case of transposition in continuous reactor. Thus it is important to understand its formation to overcome these obstacles. Analysis of the residue shows that at 350°C, for short reaction times (< 2h), carbonaceous micro-particles are formed. Their size is influenced by the temperature rates of rise and fall. For higher temperatures, the solid is of no morphological interest and its weight proportion increased with temperature. Thus, a significant production of hydrogen will be associated with a solid deposit in the reactor. A catalytic study was conducted to increase the amount of hydrogen and reduce the formation of coke while working at lower temperature. This study, conducted at 350°C and 450°C, shows that hydrogenation and oxidation reactions involved with the catalyst, lead to the expected results. Converting models molecules of black liquor, conducted with the same experimental conditions, helped to understand the major mechanisms involved during the hydrothermal conversion. The micro-particles at 350°C can be valorized. However, the change in size and morphology over time wondered about the possibility of implement in continuous reactor. The solid formation can be prevented from 450°C in the presence of catalyst, favoring in parallel hydrogen production. Therefore, this thesis deals with scientific, technical and technological locks related to hydrothermal conversion of black liquor and especially the solid formation, with or without catalyst
Bahrani, Seyed Amir. „Modification des propriétés physico-chimiques de l'amidon par procédés hydrothermiques : Contribution à l'étude des transferts couplés chaleur-masse“. Phd thesis, Université de La Rochelle, 2012. http://tel.archives-ouvertes.fr/tel-00823904.
Der volle Inhalt der QuelleAimable, Anne. „Synthèse hydrothermale en continu et en conditions supercritiques du matériau d’électrode positive des batteries Li-ion LiFePO4 : du matériau au procédé“. Dijon, 2007. http://www.theses.fr/2007DIJOS070.
Der volle Inhalt der QuelleLiFePO4 appears as the best candidate in order to be used as a positive electrode material for lithium batteries, especially since the pionnering works of Goodenough in 1997. In this study, the continuous hydrothermal synthesis of LiFePO4 in supercritical water was investigated. The first approach was based on an experimental design, in order to determine optimal conditions leading to a pure and crystalline material, with nanometric grain sizes, and interesting electrochemical properties. The higher capacity obtained is 75 mAh. G−1, which was also obtained from materials synthesized by other ways without any carbon, but below the expected value of 170 mAh. G−1. These low performances were explained by a large agglomeration, and a non optimized formulation of the electrode. In the second part of this study, a novel approach was engaged, based on an engineering aspect. The objective was to control the different steps of the synthesis : germination, growth and agglomeration. At first, heat transfer were studied inside the apparatus, and some changes were brought to improve its running. Then, CFD calculations were performed in the mixing device to model heat transfer and reactive flows in supercritical conditions
Maât, Nicolas. „Développement d'un procédé écologique pour le recyclage des aimants permanents Nd-Fe-B : voie hydrothermale, broyage“. Thesis, Normandie, 2017. http://www.theses.fr/2017NORMR016/document.
Der volle Inhalt der QuelleRare earth supplying is a very current topic, linked to the rare earth crisis of 2010. « Urban mining » is a promising path for recycling rare earths included in waste daily generated by industralized countries. In this work, we focus on recycling Nd-Fe-B permanent magnets, because they are a very interesting deposit for Neodymium, but also for Dysprosium and Praseodymium. More precisely, permanent magnets included in hard disks drives have been considered. The objective of this work is to set up environmentally friendly and low cost recycling processes for rare earths. First, we investigated hydrothermal treatment of Nd-Fe-B permanent magnets, We developed a new and environmentally friendly approach for recycling Ni−Cu coated Nd-Fe−B permanent magnets included in computer hard disk drives. In a closed reactor, the coated magnets are heated at 250 °C in water mixed with sodium chloride for up to 18 h. First, the hydrothermal treatment induces the removal of the metallic coating that can be recovered by sieving. Then, the Nd-rich phase reacts with water, leading to the formation of Nd(OH)3. Atomic hydrogen is absorbed by the Nd2Fe14B phase, leading to the formation of Nd2Fe14BHx. The volume expansion of the intergranular phase, in relation to the formation of Nd(OH)3, together with the lattice expansion of the Nd2Fe14BHx phase causes the disintegration of the magnets. Finally, Nd2Fe14BHx is oxidized by water into Fe3O4 and Nd(OH)3. The Nd(OH)3 crystals can be isolated from the Fe3O4 crystals by magnetic separation. This process is thus an easy way to extract rare earths from permanent magnets found in WEEE. It uses green chemistry design principles and can be applied to large amounts of magnetic wastes. Mechanical milling of Nd-Fe-B permanent magnets has also been investigated, and, in the study presented here, the milling effect on the magnetic properties of the Nd2Fe14B intermetallic was investigated using SQUID measurements, Mössbauer spectrometry and atom probe tomography (APT). Mechanical milling of the Nd2Fe14B alloy leads to its decomposition and its nanostructuration. This transformation induces first the formation of an amorphous, disordered phase Nd-Fe-B, with an enrichment in Neodymium; then to the formation of a mixture of -Fe and Nd-rich regions. The corresponding microstructure is very characteristic, with the formation of pure iron particles, with a hundred of nanometers in size, surrounded by an amorphous shell enriched in Neodymium and in Boron. Finally, intermixing of these phases is observed. Thanks to this work, we determine the behavior and the transformations of Nd-Fe-B permanent magnets during two very different processes: hydrothermal treatment and mechanical milling. Results obtained with hydrothermal treatment are very promising for recycling rare earths at the industrial scale
Belaqziz, Mohamed. „Association des procédés hydrothermal et CVD à courte distance pour l'élaboration de couches minces photovoltaiques à partir d'une source nanostructurée du composé Cu2SnS3“. Thesis, Perpignan, 2018. http://www.theses.fr/2018PERP0007/document.
Der volle Inhalt der QuelleThe Cu2SnS3 compound (CTS) is a semiconductor characterized by a direct band gap and a high optical absorption coefficient in the visible range. These properties make it one of the most attractive materials for thin-film photovoltaic (PV) applications. Compared to competing technologies, CTS derives its main benefits from the number and nature of its constituent elements. They are abundant and non-toxic. This encouraging trend is propitious for the development of future low cost and environmentally friendly solar cell technology. The aim of our study is to develop CTS thin films from the same nanostructured source material. To this end, we have have developed an original experimental procedure, by combining two simple, low-cost and environmentally friendly processes: Hydrothermal and Short-Range CVD. This approach has made it unnecessary to use the conventional costly processes presently employed
Ricq, Natacha (1974. „Oxydation hydrothermale de boues activées : étude du mécanisme sur un composé modèle : la cellulose“. Aix-Marseille 1, 2000. http://www.theses.fr/2000AIX11042.
Der volle Inhalt der QuelleHenry, Lucile. „Étude et développement d'un procédé propre et innovant de traitement de la surface de fibres céramiques en conditions hydrothermales“. Thesis, Bordeaux, 2016. http://www.theses.fr/2016BORD0328.
Der volle Inhalt der QuelleThis thesis project was carried out in order to develop a hydrothermal processfor the surface treatment of ceramic fibres which are integrated into the fabrication of ceramicmatrix composites (CMCs). A conventional process was developed by Safran Ceramics tomodify the surface chemistry of the Nicalon fibres following 3 steps. The main step consistsin dissolving the oxidised phases at the fibre surface by the use of strong acids. As aconsequence, the chemical homogeneity of the surface is enhanced and a microporouscarbon film is generated helping its compatibilization with the pyrocarbon interphase that isdeposited in between the fibres and the matrix. It was suggested to substitute thisconventional process by a hydrothermal treatment. Indeed, as water displays tunablephysico-chemical properties regarding the temperature and pressure conditions, it waspossible to recover fibres demonstrating reproducible and similar characteristics. Theefficiency and competitivity of the hydrothermal treatment have been assessed throughoptimised surface properties obtained after one single step. Next, the mechanisminvestigation revealed a selective attack of the Si atoms contained in the fibre via hydrolysisreactions. Then, the thermodynamic study pointed out the fact that the process wasdominated by a kinetic regim. Finally, the mechanical caracterisation of the CMCs made ofhydrothermal treated fibres showed results which met all the requirements. These finalobservations allowed us to complete the qualification of the hydrothermal process to treat thesurface of Nicalon fibres
Mateos, David. „Transformation de matériaux énergétiques par oxydation hydrothermale : Etude cinétique globale et simulation du procédé en régime permanent sur des composés modèles“. Phd thesis, Université Sciences et Technologies - Bordeaux I, 2003. http://tel.archives-ouvertes.fr/tel-00010254.
Der volle Inhalt der QuelleMateos, David. „Transformation de matériaux énergétiques par oxydation hydrothermale : étude cinétique globale et simulation du procédé en régime permanent sur des composés modèles“. Bordeaux 1, 2003. http://www.theses.fr/2003BOR12795.
Der volle Inhalt der QuelleHydrothermal oxidation processes in supercritical fluid provide an innovating alternative for the management of energetic materials at the end of their "lifetime" and of the production's wastes. In order to evaluate and promote the development of this technology, two hydrothermal oxidation pilots were built. The first set up in batch mode; the reactor is protected by a lined titanium. It is dedicated to feasibility studies on real products such as propellants and the various elements of their composition. Concerning the second one, it operates in a continuous mode based on a new concept of reactor : a multi injection of oxygen along the hydrothermal oxidation reactor. This facility is devoted to the determination of data necessary to scale industrial reactors. Model molecules such as acetic acid, methanol and phenol were studied. A calculation method was developed to obtain reaction kinetics parameters, in particular the order compared to oxygen concentration. On the basis of theses kinetics data the software "Prosim Plus" was validated to simulate the hydrothermal oxidation process
Martin, Chrsitelle. „Etude du comportement à long terme des vitrocristallins à base de zirconolite“. Montpellier 2, 2002. http://www.theses.fr/2002MON20144.
Der volle Inhalt der QuelleBuendia-Kandia, Felipe. „Cellulose valorization in biorefinery : synergies between thermochemical and biological processes“. Thesis, Université de Lorraine, 2018. http://www.theses.fr/2018LORR0082/document.
Der volle Inhalt der QuelleBecause fossil resources are exhaustible by definition, the carbon needed for energy and materials production could be obtained from lignocellulosic biomass. Fermentation processes are able to provide a wide variety of interesting products that can replace the crude oil based "building blocks". However, the abundance of lignocellulosic biomass in the environment contrasts with its very low bioavailability. Indeed, because of (i) its insoluble nature, (ii) its more or less crystalline structure and (iii) the nature of the bonds between the polymer fibers, cellulose is a carbon substrate difficult to valorize by biochemical/fermentation processes alone. Fast pyrolysis or liquefaction of cellulose are mainly studied to produce a bio-oil, which would be upgraded by catalytic hydrotreatment into fuels or building blocks. In the current state of the art, studies at the interface of these two fields involving a biochemical or microbiological conversion of these bio-oils are still rare. The aim of this thesis is the coupling of a thermochemical conversion process of cellulose, to depolymerize it, to a microbial transformation process to produce solvents, acids and gases (butanol, ethanol, acetone, acetic acid, butyric acid, lactic acid, hydrogen) that are of great interest for the fuel or green chemistry industry. To do this, beech wood was fractionated by organosolv and chlorite / acid (SC / AA) methods in order to recover a cellulose-rich pulp. Hydrothermal liquefaction and fast pyrolysis processes were used to obtain sugars that were transformed into building blocks by fermentation. Many analytical methods have been developed for the characterization of products from each step of the process. Finally, a model of the process using the commercial software Aspen Plus® was developed to establish mass and energy balances of the integrated process including: the fractionation of the wood, then the liquefaction of the cellulosic fraction and the fermentation of bio-oils
Fournier, Lionel. „Interactions corrosion - deformation dans l'alliage 718 : application a la corrosion sous contrainte en milieu aqueux supercritique et recherche d'une solution materiau pour le procede d'oxydation hydrothermale“. Grenoble INPG, 2000. http://www.theses.fr/2000INPG4203.
Der volle Inhalt der QuelleCrouzet, Camille. „Procédés géo-inspirés pour la valorisation de déchets industriels ferreux et la synthèse de phosphates pour le stockage de l'énergie“. Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAU019.
Der volle Inhalt der QuelleTwo areas of research relatively different were investigated during this Ph.D thesis at the boundary between process engineering, geosciences and material sciences through the valorization of ferrous byproducts and the synthesis of iron phosphates for energy storage applications. The common thread of this work was the use of our knowledge in redox and natural hydrothermal processes as a geo-inspiration source for the development of novel industrial processes.In the first and main part of this manuscript, we propose a novel valorization path for ferrous wastes and byproducts through the recovery of iron oxides and the production of hydrogen. This process is inspired from natural hydrogen production observed in mid-Atlantic ridges where ferrous iron content of magmatic minerals is oxidized by liquid water leading, among others, to hydrogen production and magnetite (Fe3O4) formation. Applying the same oxidation process to ferrous byproducts (metal Fe or ferrous iron FeO) enables the development of a novel valorization path. A first study is conducted on the identification of hydrothermal oxidation mechanism of reagent grade FeO and the influence of mild acetic acid on oxidation kinetic. This process is then applied to steel slag, a steel-making byproduct mainly composed of calcium but also of 15 to 25 %w FeO. The major result of this study was found in the characterization of magnetite as nanoparticles, a highly valuable product. In addition, we propose to complete the valorization process of steel slag by performing mineral CO2 sequestration (at room and high temperature).The second part of this Ph.D manuscript is dedicated to the synthesis of iron phosphates for energy storage applications. For mobile applications, this storage is nowadays mainly performed by lithium batteries. For these devices, a particular interest is given to lithium iron phosphates as positive electrode material for their ability to insert and disinsert lithium in its olivine related structure, modifying its chemical composition from LiFe2+PO4 (LFP) to Fe3+PO4 (FP). The main goal of this second part is to propose a novel synthesis path for FP through a two-step process with 1) the synthesis of a sarcopside related material Fe2+3(PO4)2 (a pseudo-olivine structured rare mineral) and 2) its isostructural oxidation in air to form the targeted FP material. This oxidation step leads to the partial solid migration of iron (exsolution mechanism) from the core to the surface and its precipitation as hematite, Fe2O3. For the sake of new materials as positive electrode, this process is then applied to the oxidation of maricite NaFe2+PO4 into Na3Fe3+2(PO4)3