Zeitschriftenartikel zum Thema „Problèmes Elliptique“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Problèmes Elliptique.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-40 Zeitschriftenartikel für die Forschung zum Thema "Problèmes Elliptique" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Frath, Pierre. „Etude du verbe ‘commencer’ en contexte“. Journal of French Language Studies 12, Nr. 2 (Juli 2002): 169–80. http://dx.doi.org/10.1017/s0959269502000236.

Der volle Inhalt der Quelle
Annotation:
Le verbe commencer pose un problème particulier: lorsqu'il est employé avec un syntagme nominal (SN) non procédural, il semblerait que nous restituions mentalement un processus qui indique de quelle manière le SN est commencé. Dans Elle commence une pomme, nous comprenons par exemple manger ou dessiner selon le contexte. Comment est-ce possible? Pour certains auteurs, il s'agirait d'une construction elliptique; pour d'autres, commencer serait accompagné d'un prédicat abstrait; pour d'autres encore, ce seraient des règles prédicatives ou cognitives qui permettraient la construction commencer + SN-objet. En étudiant les occurrences des verbes commencer et begin dans des corpus, nous avons constaté que la problématique traditionnelle ne correspondait pas aux faits; en particulier, les théories elliptiques et celles qui postulent un prédicat abstrait ne semblent pas pertinentes. Quant aux explications par règles prédicatives ou cognitives, elles nécessitent une description détaillée du lexique. Nous avançons que, dans ce cas, les règles sont inutiles: une analyse sémiotique du lexique suffit.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Benilan, Philippe, und Petra Wittbold. „Sur un problème parabolique-elliptique“. ESAIM: Mathematical Modelling and Numerical Analysis 33, Nr. 1 (Januar 1999): 121–27. http://dx.doi.org/10.1051/m2an:1999100.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Bellieud, Michel, und Guy Bouchitté. „Homogénéisation de problèmes elliptiques dégénérés“. Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 327, Nr. 8 (Oktober 1998): 787–92. http://dx.doi.org/10.1016/s0764-4442(98)80171-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Carrillo, José, und Petra Wittbold. „Unicité des solutions renormalisées de problèmes elliptiques-paraboliques“. Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 328, Nr. 1 (Januar 1999): 23–28. http://dx.doi.org/10.1016/s0764-4442(99)80006-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Arias, Margarita, Juan Campos, Mabel Cuesta und Jean-Pierre Gossez. „Sur certains problèmes elliptiques asymétriques avec poids indéfinis“. Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 332, Nr. 3 (Februar 2001): 215–18. http://dx.doi.org/10.1016/s0764-4442(00)01784-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Ouaro, Stanislas, und Hamidou Touré. „Sur un problème de type elliptique parabolique non linéaire“. Comptes Rendus Mathematique 334, Nr. 1 (Januar 2002): 27–30. http://dx.doi.org/10.1016/s1631-073x(02)02198-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Benaouda, A., A. Gmira und B. Hamri. „Classification des solutions d’un problème elliptique fortement non linéaire“. Annales mathématiques Blaise Pascal 12, Nr. 1 (2005): 161–80. http://dx.doi.org/10.5802/ambp.200.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Le Bris, Claude, Frédéric Legoll und Kun Li. „Approximation grossière dʼun problème elliptique à coefficients hautement oscillants“. Comptes Rendus Mathematique 351, Nr. 7-8 (April 2013): 265–70. http://dx.doi.org/10.1016/j.crma.2013.04.008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Favini, Angelo, Rabah Labbas, Stéphane Maingot, Hiroki Tanabe und Atsushi Yagi. „Étude unifiée de problèmes elliptiques dans le cadre höldérien“. Comptes Rendus Mathematique 341, Nr. 8 (Oktober 2005): 485–90. http://dx.doi.org/10.1016/j.crma.2005.09.011.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Ramos, Miguel, Susanna Terracini und Christophe Troestler. „Problèmes elliptiques sur-linéaires avec non-linéarité sans signe défini“. Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 325, Nr. 3 (August 1997): 283–86. http://dx.doi.org/10.1016/s0764-4442(97)83956-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Bocea, Marian, und Vicenţiu Rădulescu. „Problèmes elliptiques avec non-linéarité discontinue et second membre L1“. Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 324, Nr. 2 (Januar 1997): 169–72. http://dx.doi.org/10.1016/s0764-4442(99)80338-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Azaïez, Mejdi, Alain Bergeon und Franck Plouraboué. „Un nouveau préconditionneur pour les problèmes elliptiques à coefficients variables“. Comptes Rendus Mécanique 331, Nr. 7 (Juli 2003): 509–14. http://dx.doi.org/10.1016/s1631-0721(03)00091-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Chenais, Denise, und Enrique Zuazua. „Approximation par éléments finis de problèmes elliptiques d'optimisation de forme“. Comptes Rendus Mathematique 338, Nr. 9 (Mai 2004): 729–34. http://dx.doi.org/10.1016/j.crma.2004.02.003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Blanc, Xavier, Claude Le Bris und Pierre-Louis Lions. „Profils locaux et problèmes elliptiques à plusieurs échelles avec défauts“. Comptes Rendus Mathematique 353, Nr. 3 (März 2015): 203–8. http://dx.doi.org/10.1016/j.crma.2015.01.003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Sbai, Abdelaaziz, und Youssef El Hadfi. „Regularizing effect of absorbtion term in singular and degenerate elliptic problems“. Boletim da Sociedade Paranaense de Matemática 42 (03.05.2024): 1–17. http://dx.doi.org/10.5269/bspm.63746.

Der volle Inhalt der Quelle
Annotation:
Dans cet article, nous étudions l’existence et la régularité des solutions au problème singulier suivant\\\begin{equation}\left\{\begin{array}{lll}-\displaystyle\mbox{div} \big(a(x,u)\vert\nabla u\vert^{p-2}\nabla u\big) + \vert u\vert^{s-1}u =h(u)f &\mbox{ in } \Omega \\&u\geq 0 &\mbox{ in }\Omega \\&u=0 &\mbox{ on } \delta\Omega\\\end{array}\right.\end{equation} prouvant que le terme d’ordre inférieur $u\vert u\vert^{s-1}$ a des effets régularisants sur les solutions dans le cas d’un opérateur elliptique à coercivité dégénérée.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Boun-jad, Mohamed, und Toufik Zebbiche. „Solution de l’équation de Poisson dans un domaine bidimensionnel par la méthode des éléments finis“. Journal of Renewable Energies 16, Nr. 3 (22.10.2023): 441–84. http://dx.doi.org/10.54966/jreen.v16i3.392.

Der volle Inhalt der Quelle
Annotation:
Ce travail présente une modeste contribution sur le domaine des éléments finis. On a essayé de résoudre l’équation de Poisson avec les conditions aux limites de type Dirichlet dans un domaine quelconque bidimensionnel simplement connexe. Après une brève théorie sur la résolution de cette équation, on a trouvé les solutions analytiques exactes que pour les sections circulaires, rectangulaires et elliptiques. D’où notre intérêt est orienté vers la recherche des solutions numériques approchées. La méthode utilisée est celle des éléments finis. Deux programmes de calcul numérique ont été réalisés dans ce contexte. Le premier est consacré pour la génération du maillage triangulaire dans les domaines concernés. On a développé ici une technique permettant de générer un maillage de type ‘H’ dans n’importe quel domaine simplement connexe. Le deuxième programme réalisé est celui pour la résolution numérique de l’équation de Poisson dans un domaine simplement connexe avec les conditions aux limites de Dirichlet. Le programme utilise un seul type d’élément fini est le triangle à trois noeuds. Le problème résolu a un grand intérêt physique et pratique dans pas mal de disciplines, telles que, le transfert de chaleur dans des ailettes de moteur, l’écoulement à travers les conduites quelconques et d’autres problèmes tels que, l’étude de la torsion des poutres de sections non circulaires arbitraires comme la torsion des pales d’hélicoptères et les ailettes dans les refroidisseurs ainsi que les aubes dans les compresseurs. Les résultats présentés sont choisis pour des sections simples pour but de comparaison et pour d’autres formes complexes.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Dauge, Monique, Serge Nicaise, Maryse Bourlard und Jean Mbaro-Saman Lubuma. „Coefficients des singularités pour des problèmes aux limites elliptiques sur un domaine à points coniques. I : Résultats généraux pour le problème de Dirichlet“. ESAIM: Mathematical Modelling and Numerical Analysis 24, Nr. 1 (1990): 27–52. http://dx.doi.org/10.1051/m2an/1990240100271.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Winckler, Bruno. „Problème de Lehmer sur les courbes elliptiques à multiplications complexes“. Acta Arithmetica 182, Nr. 4 (2018): 347–96. http://dx.doi.org/10.4064/aa170404-5-11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Aftalion, Amandine, und Jérôme Busca. „Symétrie radiale pour des problèmes elliptiques surdéterminés posés dans des domaines extérieurs“. Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 324, Nr. 6 (März 1997): 633–38. http://dx.doi.org/10.1016/s0764-4442(97)86980-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

García Vázquez, Concepción, und Francisco Ortegón Gallego. „Sur un problème elliptique non linéaire avec diffusion singulière et second membre dans“. Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 332, Nr. 2 (Februar 2001): 145–50. http://dx.doi.org/10.1016/s0764-4442(00)01797-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Steux, Jean-Luc. „Problème de Dirichlet pour un opérateur elliptique dans un domaine à point cuspide“. Annales de la faculté des sciences de Toulouse Mathématiques 6, Nr. 1 (1997): 143–75. http://dx.doi.org/10.5802/afst.859.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Ciarlet, Philippe G., Cristinel Mardare und Paolo Piersanti. „Un problème de confinement pour une coque membranaire linéairement élastique de type elliptique“. Comptes Rendus Mathematique 356, Nr. 10 (Oktober 2018): 1040–51. http://dx.doi.org/10.1016/j.crma.2018.08.002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Le Brizaut, Jean-Sébastien. „Méthodes d'optimisation pour l'approche de problèmes aux limites non linéaires mixtes elliptiques hyperboliques“. Bulletin des Sciences Mathématiques 127, Nr. 3 (Mai 2003): 231–50. http://dx.doi.org/10.1016/s0007-4497(03)00018-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Prignet, Alain. „Conditions aux limites non homogènes pour des problèmes elliptiques avec second membre mesure“. Annales de la faculté des sciences de Toulouse Mathématiques 6, Nr. 2 (1997): 297–318. http://dx.doi.org/10.5802/afst.867.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Raymond, Jean Pierre. „Théorèmes de régularité locale pour des systèmes elliptiques dégénérés et des problèmes non différentiables“. Annales de la faculté des sciences de Toulouse Mathématiques 9, Nr. 3 (1988): 381–412. http://dx.doi.org/10.5802/afst.665.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Simon, Alice, und Peter Volkmann. „Existence de deux solutions positives pour un problème elliptique à paramètre dans $\mathbb R^n$“. Topological Methods in Nonlinear Analysis 3, Nr. 2 (01.06.1994): 295. http://dx.doi.org/10.12775/tmna.1994.015.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Atallah, Amel. „Problème de Dirichlet pour une équation de Monge-Ampère réelle elliptique dégénérée en dimension $n$“. Transactions of the American Mathematical Society 352, Nr. 6 (28.02.2000): 2701–21. http://dx.doi.org/10.1090/s0002-9947-00-02581-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Guillaume, Philippe, und Vladimir Latocha. „Résolution numérique d'un problème elliptique fortement anisotrope en deux dimensions par une méthode de paramétrisation“. Comptes Rendus Mathematique 337, Nr. 6 (September 2003): 419–24. http://dx.doi.org/10.1016/s1631-073x(03)00362-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Robbiano, L. „Non unicité du problème de Cauchy pour des opérateurs non elliptiques à symboles complexes“. Journal of Differential Equations 57, Nr. 2 (April 1985): 200–223. http://dx.doi.org/10.1016/0022-0396(85)90077-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Caraffa, Daniela. „Etude des problèmes elliptiques non linéaires du quatrième ordre avec exposants critiques sur les variétés riemanniennes compactes“. Journal de Mathématiques Pures et Appliquées 83, Nr. 1 (Januar 2004): 115–36. http://dx.doi.org/10.1016/s0021-7824(03)00068-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Chipot, Michel, und Arnaud Rougirel. „Sur le comportement asymptotique de la solution de problèmes elliptiques dans des domaines cylindriques tendant vers l'infini“. Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 331, Nr. 6 (September 2000): 435–40. http://dx.doi.org/10.1016/s0764-4442(00)01675-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Dauge, M., S. Nicaise, M. Bourlard und J. Mbaro-Saman Lubuma. „Coefficients des singularités pour des problèmes aux limites elliptiques sur un domaine à points coniques. II : Quelques opérateurs particuliers“. ESAIM: Mathematical Modelling and Numerical Analysis 24, Nr. 3 (1990): 343–67. http://dx.doi.org/10.1051/m2an/1990240303431.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Misiti, Michel. „Étude du nombre de solutions pour une classe d'équations elliptiques non-linéaires qui se prolongent en problèmes à frontière libre“. Annales de la faculté des sciences de Toulouse Mathématiques 9, Nr. 3 (1988): 295–340. http://dx.doi.org/10.5802/afst.662.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Leclercq, Éric. „Problème de Dirichlet asymptotique et diffusion associés à un opérateur elliptique sur une variété de Cartan-Hadaniard à courbures non minorées“. Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 325, Nr. 8 (Oktober 1997): 857–62. http://dx.doi.org/10.1016/s0764-4442(97)80126-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Gabbouhy, Mostafa, und Zoubida Mghazli. „Un résultat d'existence de solutions faibles du problème d'écoulement non saturé modélisé par un système parabolique-elliptique non linéaire doublement dégénéré“. Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 330, Nr. 5 (März 2000): 403–8. http://dx.doi.org/10.1016/s0764-4442(00)00148-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Costabel, Martin, und Monique Dauge. „Singularités d'arêtes pour les problèmes aux limites elliptiques“. Journées équations aux dérivées partielles, 1992, 1–12. http://dx.doi.org/10.5802/jedp.422.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Duzaar, F. „Régularité pour problèmes elliptiques dégénérés via approximation p-harmonique“. Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 27.02.2004. http://dx.doi.org/10.1016/s0294-1449(03)00059-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Isselkou, Ould Ahmed Izid Bih. „On a Radially Symmetrical Green’s Function“. Revue Africaine de la Recherche en Informatique et Mathématiques Appliquées Volume 9, 2007 Conference in... (11.08.2008). http://dx.doi.org/10.46298/arima.1902.

Der volle Inhalt der Quelle
Annotation:
International audience It is quite usual to transform elliptic PDE problems of second order into fixed point integral problems, via the Green’s function. But it is not easy, in general, to handle integrals involved in such a formulation. When it comes to the Laplacian operator on balls of Rn, we give here a radially symmetrical Green’s function which, under some nonlinearity assumptions, makes the Green’s Integral representation formula easier to use; we give three examples of application. Il est courant de transformer un problème, donné sous forme d’EDP elliptique de second ordre, en un problème intégral de point fixe, et ce en utilisant la fonction de Green. En général, les intégrales intervenant dans une telle formulation, sont de maniement difficile. Lorsqu’il s’agit de l’opérateur du Laplacien sur des boules de Rn, nous montrons l’existence d’une fonction de Green à symétrie radiale; elle permet, moyennant des hypothèses adéquates sur la non linéarité, de faciliter l’usage de la Formule de représentation de Green; nous donnons trois exemples d’application.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Du, Y. „Multiplicité des solutions positives d'un problème elliptique superlinéaire indéfini dans RN“. Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 03.03.2004. http://dx.doi.org/10.1016/s0294-1449(03)00057-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Neveu, Emilie, Laurent Debreu und François-Xavier Le Dimet. „Multigrid methods and data assimilation ― Convergence study and first experiments on non-linear equations“. Revue Africaine de la Recherche en Informatique et Mathématiques Appliquées Volume 14 - 2011 - Special... (21.08.2011). http://dx.doi.org/10.46298/arima.1944.

Der volle Inhalt der Quelle
Annotation:
International audience In order to limit the computational cost of the variational data assimilation process, we investigate the use of multigrid methods to solve the associated optimal control system. On a linear advection equation, we study the impact of the regularization term and the discretization errors on the efficiency of the coarse grid correction step introduced by the multigrid method. We show that even if for a perfect numerical model the optimal control problem leads to the solution of an elliptic system, discretization errors introduce implicit diffusion that can alter the success of the multigrid methods. Then we test the multigrids configuration and the influence of the algorithmic parameters on a non-linear Burgers equation to show that the algorithm is robust and converges much faster than the monogrid one. Afin de limiter le coût de calcul lié aux méthodes variationnelles d’assimilation de données, nous nous intéressons ici à l’utilisation de méthodes multigrilles pour la résolution de systèmes de contrôle optimal. Sur un modèle simple d’advection linéaire, nous étudions l’impact du terme de régularisation du contrôle optimal ainsi que l’impact des erreurs de discrétisation sur l’efficacité de la correction grille grossière introduite par cette méthode. En particulier, nous montrons que pour un modèle numérique parfait, le problème de contrôle optimal est elliptique mais que les erreurs de discrétisation introduisant une diffusion implicite peuvent altérer les performances de la méthode multigrille. Enfin, sur une équation de Burgers, non linéaire, nous étudions l’influence des différents paramètres inhérents aux méthodes multigrilles et montrons que ces méthodes sont robustes et convergent beaucoup plus rapidement que les méthodes monogrilles.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie