Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Problème à N corps quantique“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Problème à N corps quantique" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Problème à N corps quantique"
Waintal, Xavier. „Le problème à N corps qui se cache derrière l’ordinateur quantique“. Reflets de la physique, Nr. 70 (Oktober 2021): 18–23. http://dx.doi.org/10.1051/refdp/202170018.
Der volle Inhalt der QuellePortier, Natacha. „Le problème des grandes puissances et celui des grandes racines“. Journal of Symbolic Logic 65, Nr. 4 (Dezember 2000): 1675–85. http://dx.doi.org/10.2307/2695068.
Der volle Inhalt der QuelleAlbouy, Alain, und Alain Chenciner. „Le problème des n corps et les distances mutuelles“. Inventiones Mathematicae 131, Nr. 1 (17.12.1997): 151–84. http://dx.doi.org/10.1007/s002220050200.
Der volle Inhalt der QuelleGondard, Françoise Delon et Danielle. „XVIIème problème de Hilbert sur les corps chaîne-clos“. Journal of Symbolic Logic 56, Nr. 3 (September 1991): 853–61. http://dx.doi.org/10.2178/jsl/1183743733.
Der volle Inhalt der QuelleDermenjian, Yves, und Viorel Iftimie. „Méthodes à {$N$} corps pour un problème de milieux pluristratifiés perturbés“. Publications of the Research Institute for Mathematical Sciences 35, Nr. 4 (1999): 679–709. http://dx.doi.org/10.2977/prims/1195143498.
Der volle Inhalt der QuelleYefsah, Tarik, und Clément Sayrin. „Simulation quantique avec des atomes froids. Comment manipuler et sonder des systèmes quantiques à l’échelle de l’atome individuel“. Reflets de la physique, Nr. 71 (Januar 2022): 8–15. http://dx.doi.org/10.1051/refdp/202271008.
Der volle Inhalt der QuelleChenciner, Alain, und Jacques Féjoz. „L'équation aux variations verticales d'un équilibre relatif comme source de nouvelles solutions périodiques du problème des N corps“. Comptes Rendus Mathematique 340, Nr. 8 (April 2005): 593–98. http://dx.doi.org/10.1016/j.crma.2005.02.016.
Der volle Inhalt der QuelleDissertationen zum Thema "Problème à N corps quantique"
Puertas, Javier. „Interaction lumière-matière dans le régime à N-corps des circuits quantiques supraconducteurs“. Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAY021/document.
Der volle Inhalt der QuelleUnderstanding the way light and matter interact remains a central topic in modern physics despite decades of intensive research. Owing to the large light-matter interaction in superconducting circuits, it is now realistic to think about experiments where the dynamics of environments containing many degrees of freedom becomes relevant. It suggests that bridging many-body physics, usually devoted to condensed matter, and quantum optics is within reach.In this work we present a fully tunable system for studying light-matter interaction with many bodies at different coupling regimes. The circuit consists of a transmon qubit (“the matter”) capacitively coupled to an array of 4700 Josephson junctions in a squid geometry, sustaining many electromagnetic or plasma modes (“the light”). Thanks to the large kinetic inductance of Josephson junctions, the array shows a high characteristic impedance that enhances the qubit-modes coupling. The squids in the transmon and in the array allow us to tune the strength of this coupling via an external magnetic flux.We observe the three required ingredients to explore many-body physics: an environment with a high density of electromagnetic modes, the ultra-strong light-matter coupling regime and a non-linearity comparable to the other relevant energy scales. Moreover, we present a method to treat the effect of the vacuum fluctuations of all these degrees of freedom. Thus we provide a quantitative and parameter-free model of this large quantum system. Finally, from the phase shift induced by the transmon on the modes of the array, the transmon phase shift, we quantify the hybridization of the transmon qubit with several modes in the array (up to 10) and obtain the transmon resonance frequency and its width, demonstrating that we are in the ultra-strong coupling regime.This work demonstrates that quantum circuits are a very powerful platform to explore many-body quantum optics in a fully controlled way. Combining superconducting metamaterials and qubits could allow us to observe qualitative many-body effects such as giant lambshift, non-classical states of light and particle productions or to simulate quantum impurity problems (such as the Kondo model or the sine-Gordon model) and dissipative quantum phase transitions
CHAU, Huu-Tai. „Symétrie et géométrie du problème à N-corps. Application à la physique nucléaire“. Phd thesis, Université de Caen, 2002. http://tel.archives-ouvertes.fr/tel-00002252.
Der volle Inhalt der QuelleFalakshahi, Houman. „Etude de la fusion quantique du cristal de Wigner“. Paris 11, 2004. http://www.theses.fr/2004PA112279.
Der volle Inhalt der QuelleWe study the behaviour of a two-dimensional electrons system as a function of the density of the particles at zero temperature and zero disorder. At high density, the system is in a Fermi liquid state. At low density, the Coulomb repulsion locates the electrons on a periodic lattice (Wigner crystal, 1934). As the density increases, the Wigner crystal melts because of quantum fluctuations. The understanding of this transition is still an open question. According to the usual hypothesis, the crystal melts directly into the Fermi Liquid. In this case the critical density was precisely estimated by Quantum Monte Carlo methods (Tanatar and Ceperley, 1989). But according to other studies another phasis may exist in between theses two phases (Pichard 2003, Andreev and Lifchitz 1969). This work contains two different sections. In the first part, we show that in some experimental samples, the atomic lattice upon which the electrons are traped modify the physical behaviour of the electronic system. In the second part, we study the melting of the Wigner crystal. At first we reproduced the result of Tanatar and Ceperley with supposing that the cristal melts directly to the Fermi Liquid. But the principle result of this work is the finding of a new phasis of lower energy than the liquid and the crystal. This phasis has the same symmetry than the crystal but has new properties. For instance the electrons are located around the crystal sites and are also delocalised everywhere in the system. This result shows that at least a new quantum phasis exists in between the Fermi liquid and the Wigner crystal
Chau, Huu-Tai Pierre. „Symétrie et géométrie du problème à N-corps : application à la physique nucléaire“. Caen, 2002. http://www.theses.fr/2002CAEN2029.
Der volle Inhalt der QuelleLe, Boité Alexandre. „Strongly correlated photons in arrays of nonlinear cavities“. Sorbonne Paris Cité, 2015. http://www.theses.fr/2015USPCC109.
Der volle Inhalt der QuelleIn recent years, the control of photon-photon interactions in optical nonlinear media has led to the realization of quantum fluids of light. One of the current challenges is to increase the strength of these interactions and enter the so-called strongly correlated regime. To achieve this goal, arrays of nonlinear cavities are a very promising candidate. In this thesis, theoretical results on arrays of nonlinear cavities described by a driven¬dissipative Bose-Hubbard model are presented. In particular, a general method to compute the mean-field phase diagram of this model is described. Due to the finite life time of photons, the system is intrinsically dissipative : cavity losses must be compensated by an external driving field. This nonequilibrium nature gives rise to interesting features, such as a transition between monostable and bistable phases induced by tunneling. In the limit of weak dissipation and weak driving, analytical results describing generalized Mott insulating phases are derived. These states survive up to a critical tunneling strength, above which a crossover to a classical coherent state takes place. Finally, the issue of how to go beyond the mean-field approximation is addressed by performing exact numerical simulations. Large arrays of cavities were simulated by implementing a new method specifically tailored for driven-dissipative systems
Molineri, Anaïs. „Un nouveau dispositif pour étudier la relaxation d'un système quantique à N corps“. Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLO013/document.
Der volle Inhalt der QuelleThis manuscript presents the first steps of a new ultracold atoms experiment using strontium 84. The aim of this experiment is to study the relaxation dynamics of quantum gases initially prepared in an out-of-equilibrium state. This experiment will include a quantum gas microscope, allowing us to measure spatial correlation functions in two-dimensionnal systems. The current state of the construction allows us to generate both magneto-optical trap of strontium: along its wide transition at 461 nm and its narrow transition at 689 nm. Concurrently with the experimental setup, we carried out works on a reconstruction algorithm required for the future data processing of the microscope images. This manuscript details experimental aspects, justifying their choices, and presents the current state of work on the reconstruction algorithm. There are still steps to complete the experimental setup: add a chamber where we will make the measurements to the vaccuum system, set up the quantum gaz microscope and all the required optics to transport the atomic clouds between two vaccuum chambers, to reach Bose-Einstein condensation and to confine the atoms in two-dimensionnal optical traps
Thibaut, Jérôme. „Corrélations, intrication et dynamique des systèmes quantiques à N Corps : une étude variationnelle“. Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEN021/document.
Der volle Inhalt der QuelleThis thesis presents a study of quantum many-body systems at zero temperature, where the behavior of the system is purely driven by the quantum effects. I will introduce a variationnal approach developped with Tommaso Roscilde, my PhD supervisor, and Fabio Mezzacapo, my co-supervisor, in order to study these systems.This approach is based on a parametrisation of the quantum state (named Ansatz) on which we apply a variational optimisation, allowing us reproduce the system's evolution under Schrödinger's equation with a limited number of variables.By considering an imaginary-time evolution, it is possible to reconstruct the system's ground state. I focused on S=1/2 XX spin chain, where the long-range quantum correlations complicate a variational study; and I have specifically targeted our Ansatz in order to reproduce the correlations and the entanglement of the ground state. Moreover I considered the antiferromagnetic S=1/2 J1-J2 spin chain, where the non-trivial sign structure of the coefficients of the quantum state introduces an important challenge for the quantum Monte Carlo approach; and where the magnetic frustration induces a quantum phase transition (from a state with long range correlations to a non-magnetic state in the form of a valence-bond crystal).Finally I focused on the time evolution of a quantum many-body system starting from a non-stationary state. I studied the ability of our approach to reproduce the linear increase of the entanglement during time, which is a fondamental obstacle for other approaches such as the density-matrix renormalization group
Moutenet, Alice. „Nouveaux algorithmes pour l’étude des propriétés d’équilibre et hors d’équilibre des systèmes quantiques fortement corrélés“. Thesis, Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAX026.
Der volle Inhalt der QuelleWhat do stars in a galaxy, drops in a river, and electrons in a superconducting cuprate levitating above a magnet all have in common? All of these systems cannot be described by the isolated motion of one of their parts. These singular properties emerge from particles and their interactions as a whole: we talk about the emph{many-body problem}.In this Thesis, we focus on properties of strongly-correlated systems, that obey quantum mechanics. Analytical methods being rapidly limited in their understanding of these materials, we develop novel numerical techniques to precisely quantify their properties when interactions between particles become strong.First, we focus on the equilibrium properties of the layered perovskite Sr2IrO4, a compound isostructural to the superconducting cuprate La2CuO4,where we prove the existence of a pseudogap and describe the electronic structure of this material upon doping.Then, in order to address the thermodynamic limit of lattice problems, we develop extensions of determinant Monte Carlo algorithms to compute dynamical quantities such as the self-energy. We show how a factorial number of diagrams can be regrouped in a sum of determinants, hence drastically reducing the fermionic sign problem.In the second part, we turn to the description of nonequilibrium phenomena in correlated systems.We start by revisiting the real-time diagrammatic Monte Carlo recent advances in a new basis where all vacuum diagrams directly vanish.In an importance sampling procedure,such an algorithm can directly addressthe long-time limit needed in the study of steady states in out-of-equilibrium systems.Finally, we study the insulator-to-metal transition induced by an electric field in Ca2RuO4, which coexists with a structural transition.An algorithm based on the non-crossing approximation allows us to compute the current as a function of crystal-field splitting in this material and to compare our results to experimental data
Lienhard, Vincent. „Physique quantique expérimentale à N corps dans des matrices d'atomes de Rydberg. Des modèles de spins à la matière topologique“. Thesis, Université Paris-Saclay (ComUE), 2019. https://pastel.archives-ouvertes.fr/tel-02949007.
Der volle Inhalt der QuelleRydberg-based platforms, involving single atoms trapped in arrays of optical tweezers and excited to Rydberg states, have recently proven attractive to perform quantum simulation of many-body physics. In this thesis, we first demonstrated the generation of arrays of optical tweezers fully loaded by single ground-state atoms. The trapping technique was then extended for Rydberg atoms. The latest are repelled from high-intensity regions via the ponderomotive force, so we created holographically dark regions surrounded by light to confine them. We also studied spin-spin correlations in artificial Ising or XY magnets, engineered by using either the van der Waals or the resonant dipolar coupling between Rydberg atoms. In the Ising case, we observed the growth of antiferromagnetic correlations during a dynamical tuning of the Hamiltonian, revealing an effective velocity for the spreading of correlations, and a typical site to site build-up mechanism. In the XY case, we demonstrated the preparation of a controlled number of spin excitations, and the generation of 1D XY ferromagnets and a 2D stripy order phase (ferromagnetic chains anti-aligned with respect to each other). Finally, we used additional exchange terms of the dipole-dipole interaction to engineer complex hopping amplitudes for an effective particle. This resulted in the emergence of an artificial gauge field, characterized on a minimal three-atom system, and opens the way to the observation of chiral edge states, a signature of topological insulators
Garioud, Renaud. „When perturbation theory goes non-perturbative : applications to strongly-correlated systems“. Electronic Thesis or Diss., Institut polytechnique de Paris, 2023. http://www.theses.fr/2023IPPAX052.
Der volle Inhalt der QuelleThis thesis focuses on developing new algorithms for the study of strongly correlated materials. They are quantum systems in which interactions between electrons, such as the Coulomb repulsion, play a major role and give rise to remarkable physical properties (like high temperature superconductivity) which can't be described using a one-body formalism. To fully understand these phenomenon one has to treat the full system of many particles and their interactions : this is the many body problem.The project of this thesis is developing, analyzing and applying numerical methods called diagrammatic to these systems. A lots of fundamental questions remain unanswered about the using of perturbative methods to describe a system which is, by definition, in a non-perturbative regime. What are the limits of these approaches? How do correlations effects control the structure of the perturbative series ?Algorithmic developments will be applied to the study of strongly correlated systems, such as the Hubbard model, which will allow to cope with current topics of interest in condensed matter physics, in particular with the physics of correlated magnetism and of the pseudo gap in cuprate superconductors, or with the existence of a Mott phase transition with no preexisting ordered phase as it has been recently observed in experiments on organic materials
Bücher zum Thema "Problème à N corps quantique"
Martin, Philippe A. Problèmes à N-corps et champs quantiques: Cours élémentaire. Freiburg: Presses polytechniques et universitaires romandes, 1990.
Den vollen Inhalt der Quelle findenMathematical methods of many-body quantum field theory. Boca Raton: Chapman & Hall/CRC, 2005.
Den vollen Inhalt der Quelle finden1940-, Morrison J., Hrsg. Atomic many-body theory. 2. Aufl. Berlin: Springer-Verlag, 1986.
Den vollen Inhalt der Quelle findenHenri, Orland, Hrsg. Quantum many-particle systems. Redwood City, Calif: Addison-Wesley Pub. Co., 1988.
Den vollen Inhalt der Quelle findenHenri, Orland, Hrsg. Quantum many-particle systems. Reading, MA: Perseus Books, 1998.
Den vollen Inhalt der Quelle finden1932-, Mattis Daniel Charles, Hrsg. The Many-body problem: An encyclopedia of exactly solved models in one dimension. Singapore: World Scientific, 1993.
Den vollen Inhalt der Quelle findenMany-particle theory of highly excited semiconductors. Leipzig: B.G. Teubner, 1988.
Den vollen Inhalt der Quelle findenGebhard, Florian. The mott metal-insulator transition: Models and methods. New York: Springer, 1997.
Den vollen Inhalt der Quelle findenA, Knauf, Hrsg. Classical planar scattering by coulombic potentials. Berlin: Springer, 1992.
Den vollen Inhalt der Quelle findenTheory of Interacting Fermi Systems. Avalon Publishing, 1997.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Problème à N corps quantique"
„Introduction au problème des N corps ; les cas N = 2 et N = 3“. In Mathématiques & Applications, 53–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-37640-2_3.
Der volle Inhalt der QuelleKUZNETSOV, Igor, und Nickolay KUZNETSOV. „Méthodes de simulation rapide en files d’attente pour la résolution de certains problèmes combinatoires de grande taille“. In Théorie des files d’attente 1, 167–205. ISTE Group, 2021. http://dx.doi.org/10.51926/iste.9001.ch6.
Der volle Inhalt der Quelle