Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Probability theory“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Probability theory" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Probability theory"
Thun, M. von. „Probability Theory and Probability Semantics“. Australasian Journal of Philosophy 79, Nr. 4 (Dezember 2001): 570–71. http://dx.doi.org/10.1080/713659287.
Der volle Inhalt der QuelleKiessler, Peter C. „Measure Theory and Probability Theory“. Journal of the American Statistical Association 102, Nr. 479 (September 2007): 1078. http://dx.doi.org/10.1198/jasa.2007.s207.
Der volle Inhalt der QuelleBerckmoes, B., R. Lowen und J. Van Casteren. „Approach theory meets probability theory“. Topology and its Applications 158, Nr. 7 (April 2011): 836–52. http://dx.doi.org/10.1016/j.topol.2011.01.004.
Der volle Inhalt der QuelleLindley, D. V., und Harold Jeffreys. „Theory of Probability“. Mathematical Gazette 83, Nr. 497 (Juli 1999): 372. http://dx.doi.org/10.2307/3619118.
Der volle Inhalt der QuelleGuionnet, Alice, Roland Speicher und Dan-Virgil Voiculescu. „Free Probability Theory“. Oberwolfach Reports 12, Nr. 2 (2015): 1571–629. http://dx.doi.org/10.4171/owr/2015/28.
Der volle Inhalt der QuelleGuionnet, Alice, Roland Speicher und Dan-Virgil Voiculescu. „Free Probability Theory“. Oberwolfach Reports 15, Nr. 4 (16.12.2019): 3147–215. http://dx.doi.org/10.4171/owr/2018/53.
Der volle Inhalt der QuelleBhat, B. R. „Modern Probability Theory.“ Biometrics 42, Nr. 4 (Dezember 1986): 1007. http://dx.doi.org/10.2307/2530732.
Der volle Inhalt der QuelleJeffreys, H., P. A. P. Moran und C. Chatfield. „Theory of Probability.“ Biometrics 41, Nr. 2 (Juni 1985): 597. http://dx.doi.org/10.2307/2530899.
Der volle Inhalt der QuelleSpeicher, Roland. „Free Probability Theory“. Jahresbericht der Deutschen Mathematiker-Vereinigung 119, Nr. 1 (15.09.2016): 3–30. http://dx.doi.org/10.1365/s13291-016-0150-5.
Der volle Inhalt der QuelleMTW und Harold Jeffreys. „Theory of Probability“. Journal of the American Statistical Association 94, Nr. 448 (Dezember 1999): 1389. http://dx.doi.org/10.2307/2669965.
Der volle Inhalt der QuelleDissertationen zum Thema "Probability theory"
Halliwell, Joe. „Linguistic probability theory“. Thesis, University of Edinburgh, 2008. http://hdl.handle.net/1842/29135.
Der volle Inhalt der QuelleYoumbi, Norbert. „Probability theory on semihypergroups“. [Tampa, Fla.] : University of South Florida, 2005. http://purl.fcla.edu/fcla/etd/SFE0001201.
Der volle Inhalt der QuelleSorokin, Yegor. „Probability theory, fourier transform and central limit theorem“. Manhattan, Kan. : Kansas State University, 2009. http://hdl.handle.net/2097/1604.
Der volle Inhalt der QuelleJohns, Richard. „A theory of physical probability“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape9/PQDD_0027/NQ38907.pdf.
Der volle Inhalt der QuellePerlin, Alex 1974. „Probability theory on Galton-Watson trees“. Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/8673.
Der volle Inhalt der QuelleIncludes bibliographical references (p. 91).
By a Galton-Watson tree T we mean an infinite rooted tree that starts with one node and where each node has a random number of children independently of the rest of the tree. In the first chapter of this thesis, we prove a conjecture made in [7] for Galton-Watson trees where vertices have bounded number of children not equal to 1. The conjecture states that the electric conductance of such a tree has a continuous distribution. In the second chapter, we study rays in Galton-Watson trees. We establish what concentration of vertices with is given number of children is possible along a ray in a typical tree. We also gauge the size of the collection of all rays with given concentrations of vertices of given degrees.
by Alex Perlin.
Ph.D.
Wang, Jiun-Chau. „Limit theorems in noncommutative probability theory“. [Bloomington, Ind.] : Indiana University, 2008. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3331258.
Der volle Inhalt der QuelleTitle from PDF t.p. (viewed on Jul 27, 2009). Source: Dissertation Abstracts International, Volume: 69-11, Section: B, page: 6852. Adviser: Hari Bercovici.
Burns, Jonathan. „Recursive Methods in Number Theory, Combinatorial Graph Theory, and Probability“. Scholar Commons, 2014. https://scholarcommons.usf.edu/etd/5193.
Der volle Inhalt der QuelleChristopher, Fisher Ryan. „Are people naive probability theorists? An examination of the probability theory + variation model“. Miami University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=miami1406657670.
Der volle Inhalt der QuelleTarrago, Pierre. „Non-commutative generalization of some probabilistic results from representation theory“. Thesis, Paris Est, 2015. http://www.theses.fr/2015PESC1123/document.
Der volle Inhalt der QuelleThe subject of this thesis is the non-commutative generalization of some probabilistic results that occur in representation theory. The results of the thesis are divided into three different parts. In the first part of the thesis, we classify all unitary easy quantum groups whose intertwiner spaces are described by non-crossing partitions, and develop the Weingarten calculus on these quantum groups. As an application of the previous work, we recover the results of Diaconis and Shahshahani on the unitary group and extend those results to the free unitary group. In the second part of the thesis, we study the free wreath product. First, we study the free wreath product with the free symmetric group by giving a description of the intertwiner spaces: several probabilistic results are deduced from this description. Then, we relate the intertwiner spaces of a free wreath product with the free product of planar algebras, an object which has been defined by Bisch and Jones. This relation allows us to prove the conjecture of Banica and Bichon. In the last part of the thesis, we prove that the minimal and the Martin boundaries of a graph introduced by Gnedin and Olshanski are the same. In order to prove this, we give some precise estimates on the uniform standard filling of a large ribbon Young diagram. This yields several asymptotic results on the filling of large ribbon Young diagrams
McGillivray, Ivor Edward. „Some applications of Dirichlet forms in probability theory“. Thesis, University of Cambridge, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.241102.
Der volle Inhalt der QuelleBücher zum Thema "Probability theory"
Meyer, Paul André. Quantum probability for probabilists. Berlin: Springer-Verlag, 1993.
Den vollen Inhalt der Quelle findenChen, Louis H. Y., Kwok P. Choi, Kaiyuan Hu und Lou Jiann-Hua, Hrsg. Probability Theory. Berlin, Boston: DE GRUYTER, 1992. http://dx.doi.org/10.1515/9783110862829.
Der volle Inhalt der QuelleRudas, Tamás. Probability Theory. 2455 Teller Road, Thousand Oaks California 91320 United States of America: SAGE Publications, Inc., 2004. http://dx.doi.org/10.4135/9781412985482.
Der volle Inhalt der QuelleSinai, Yakov G. Probability Theory. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-662-02845-2.
Der volle Inhalt der QuelleChow, Yuan Shih, und Henry Teicher. Probability Theory. New York, NY: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4684-0504-0.
Der volle Inhalt der QuelleHendricks, Vincent F., Stig Andur Pedersen und Klaus Frovin Jørgensen, Hrsg. Probability Theory. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-015-9648-0.
Der volle Inhalt der QuelleKlenke, Achim. Probability Theory. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56402-5.
Der volle Inhalt der QuellePakshirajan, R. P. Probability Theory. Gurgaon: Hindustan Book Agency, 2013. http://dx.doi.org/10.1007/978-93-86279-54-5.
Der volle Inhalt der QuelleChow, Yuan Shih, und Henry Teicher. Probability Theory. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-1950-7.
Der volle Inhalt der QuelleBorkar, Vivek S. Probability Theory. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4612-0791-7.
Der volle Inhalt der QuelleBuchteile zum Thema "Probability theory"
O’Hagan, Anthony. „Distribution theory“. In Probability, 132–56. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-1211-3_6.
Der volle Inhalt der QuelleCohn, Donald L. „Probability“. In Measure Theory, 307–71. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6956-8_10.
Der volle Inhalt der QuelleLynch, Scott M. „Probability Theory“. In Using Statistics in Social Research, 57–81. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8573-5_5.
Der volle Inhalt der QuelleKoch, Karl-Rudolf. „Probability Theory“. In Parameter Estimation and Hypothesis Testing in Linear Models, 87–173. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-662-02544-4_3.
Der volle Inhalt der QuelleČepin, Marko. „Probability Theory“. In Assessment of Power System Reliability, 33–57. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-688-7_4.
Der volle Inhalt der QuelleLista, Luca. „Probability Theory“. In Statistical Methods for Data Analysis in Particle Physics, 1–23. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62840-0_1.
Der volle Inhalt der QuelleDurrett, Rick. „Probability Theory“. In Mathematics Unlimited — 2001 and Beyond, 393–405. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56478-9_18.
Der volle Inhalt der QuelleStroock, Daniel W. „Probability Theory“. In Mathematics Unlimited — 2001 and Beyond, 1105–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56478-9_57.
Der volle Inhalt der QuelleSucar, Luis Enrique. „Probability Theory“. In Probabilistic Graphical Models, 15–26. London: Springer London, 2015. http://dx.doi.org/10.1007/978-1-4471-6699-3_2.
Der volle Inhalt der QuelleYao, Kai. „Probability Theory“. In Uncertain Renewal Processes, 1–25. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9345-7_1.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Probability theory"
Temlyakov, V. N. „Optimal estimators in learning theory“. In Approximation and Probability. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2006. http://dx.doi.org/10.4064/bc72-0-23.
Der volle Inhalt der QuelleHelland, Inge S. „Quantum theory as a statistical theory under symmetry“. In FOUNDATIONS OF PROBABILITY AND PHYSICS - 3. AIP, 2005. http://dx.doi.org/10.1063/1.1874567.
Der volle Inhalt der QuelleGudder, Stan. „Fuzzy Quantum Probability Theory“. In FOUNDATIONS OF PROBABILITY AND PHYSICS - 3. AIP, 2005. http://dx.doi.org/10.1063/1.1874565.
Der volle Inhalt der QuellePleśniak, W. „Multivariate polynomial inequalities viapluripotential theory and subanalytic geometry methods“. In Approximation and Probability. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2006. http://dx.doi.org/10.4064/bc72-0-16.
Der volle Inhalt der QuelleChiribella, G., G. M. D'Ariano und Paolo Perinotti. „Informational axioms for quantum theory“. In FOUNDATIONS OF PROBABILITY AND PHYSICS - 6. AIP, 2012. http://dx.doi.org/10.1063/1.3688980.
Der volle Inhalt der QuellePérez-Suárez, Marcos. „Bayesian Intersubjectivity and Quantum Theory“. In FOUNDATIONS OF PROBABILITY AND PHYSICS - 3. AIP, 2005. http://dx.doi.org/10.1063/1.1874582.
Der volle Inhalt der QuelleWoesler, Richard. „Problems of Quantum Theory may be Solved by an Emulation Theory of Quantum Physics“. In FOUNDATIONS OF PROBABILITY AND PHYSICS - 3. AIP, 2005. http://dx.doi.org/10.1063/1.1874589.
Der volle Inhalt der QuelleVacchini, B. „A Probabilistic View on Decoherence Theory“. In FOUNDATIONS OF PROBABILITY AND PHYSICS - 4. AIP, 2007. http://dx.doi.org/10.1063/1.2713491.
Der volle Inhalt der QuelleSverdlov, Roman. „Quantum field theory without Fock space“. In FOUNDATIONS OF PROBABILITY AND PHYSICS - 6. AIP, 2012. http://dx.doi.org/10.1063/1.3688986.
Der volle Inhalt der QuelleGregory, Lee. „Quantum Filtering Theory and the Filtering Interpretation“. In FOUNDATIONS OF PROBABILITY AND PHYSICS - 3. AIP, 2005. http://dx.doi.org/10.1063/1.1874562.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Probability theory"
Hurley, Michael B. Track Association with Bayesian Probability Theory. Fort Belvoir, VA: Defense Technical Information Center, Oktober 2003. http://dx.doi.org/10.21236/ada417987.
Der volle Inhalt der QuelleGoodman, I. R., und V. M. Bier. A Re-Examination of the Relationship between Fuzzy Set Theory and Probability Theory. Fort Belvoir, VA: Defense Technical Information Center, August 1991. http://dx.doi.org/10.21236/ada240243.
Der volle Inhalt der QuelleSteele, J. M. Probability and Statistics Applied to the Theory of Algorithms. Fort Belvoir, VA: Defense Technical Information Center, April 1995. http://dx.doi.org/10.21236/ada295805.
Der volle Inhalt der QuelleSullivan, Keith M., und Ian Grivell. QSIM: A Queueing Theory Model with Various Probability Distribution Functions. Fort Belvoir, VA: Defense Technical Information Center, März 2003. http://dx.doi.org/10.21236/ada414471.
Der volle Inhalt der QuelleOberkampf, William Louis, W. Troy Tucker, Jianzhong Zhang, Lev Ginzburg, Daniel J. Berleant, Scott Ferson, Janos Hajagos und Roger B. Nelsen. Dependence in probabilistic modeling, Dempster-Shafer theory, and probability bounds analysis. Office of Scientific and Technical Information (OSTI), Oktober 2004. http://dx.doi.org/10.2172/919189.
Der volle Inhalt der QuelleWise, Gary L. Some Applications of Probability and Statistics in Communication Theory and Signal Processing. Fort Belvoir, VA: Defense Technical Information Center, August 1990. http://dx.doi.org/10.21236/ada226869.
Der volle Inhalt der QuelleIlyin, M. E. The distance learning course «Theory of probability, mathematical statistics and random functions». OFERNIO, Dezember 2018. http://dx.doi.org/10.12731/ofernio.2018.23529.
Der volle Inhalt der QuelleBudhiraja, Amarjit. Stochastic Analysis and Applied Probability(3.3.1): Topics in the Theory and Applications of Stochastic Analysis. Fort Belvoir, VA: Defense Technical Information Center, Juli 2015. http://dx.doi.org/10.21236/ada625850.
Der volle Inhalt der QuelleKott, Phillip S. The Degrees of Freedom of a Variance Estimator in a Probability Sample. RTI Press, August 2020. http://dx.doi.org/10.3768/rtipress.2020.mr.0043.2008.
Der volle Inhalt der QuelleZio, Enrico, und Nicola Pedroni. Literature review of methods for representing uncertainty. Fondation pour une culture de sécurité industrielle, Dezember 2013. http://dx.doi.org/10.57071/124ure.
Der volle Inhalt der Quelle