Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Probability learning“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Probability learning" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Probability learning"
SAEKI, Daisuke. „Probability learning in golden hamsters“. Japanese Journal of Animal Psychology 49, Nr. 1 (1999): 41–47. http://dx.doi.org/10.2502/janip.49.41.
Der volle Inhalt der QuelleGroth, Randall E., Jennifer A. Bergner und Jathan W. Austin. „Dimensions of Learning Probability Vocabulary“. Journal for Research in Mathematics Education 51, Nr. 1 (Januar 2020): 75–104. http://dx.doi.org/10.5951/jresematheduc.2019.0008.
Der volle Inhalt der QuelleGroth, Randall E., Jennifer A. Bergner und Jathan W. Austin. „Dimensions of Learning Probability Vocabulary“. Journal for Research in Mathematics Education 51, Nr. 1 (Januar 2020): 75–104. http://dx.doi.org/10.5951/jresematheduc.51.1.0075.
Der volle Inhalt der QuelleRivas, Javier. „Probability matching and reinforcement learning“. Journal of Mathematical Economics 49, Nr. 1 (Januar 2013): 17–21. http://dx.doi.org/10.1016/j.jmateco.2012.09.004.
Der volle Inhalt der QuelleWest, Bruce J. „Fractal Probability Measures of Learning“. Methods 24, Nr. 4 (August 2001): 395–402. http://dx.doi.org/10.1006/meth.2001.1208.
Der volle Inhalt der QuelleJiang, Xiaolei. „Conditional Probability in Machine Learning“. Journal of Education and Educational Research 4, Nr. 2 (20.07.2023): 31–33. http://dx.doi.org/10.54097/jeer.v4i2.10647.
Der volle Inhalt der QuelleMalley, J. D., J. Kruppa, A. Dasgupta, K. G. Malley und A. Ziegler. „Probability Machines“. Methods of Information in Medicine 51, Nr. 01 (2012): 74–81. http://dx.doi.org/10.3414/me00-01-0052.
Der volle Inhalt der QuelleDawson, Michael R. W. „Probability Learning by Perceptrons and People“. Comparative Cognition & Behavior Reviews 15 (2022): 1–188. http://dx.doi.org/10.3819/ccbr.2019.140011.
Der volle Inhalt der QuelleHIRASAWA, Kotaro, Masaaki HARADA, Masanao OHBAYASHI, Juuichi MURATA und Jinglu HU. „Probability and Possibility Automaton Learning Network“. IEEJ Transactions on Industry Applications 118, Nr. 3 (1998): 291–99. http://dx.doi.org/10.1541/ieejias.118.291.
Der volle Inhalt der QuelleGroth, Randall E., Jaime Butler und Delmar Nelson. „Overcoming challenges in learning probability vocabulary“. Teaching Statistics 38, Nr. 3 (26.05.2016): 102–7. http://dx.doi.org/10.1111/test.12109.
Der volle Inhalt der QuelleDissertationen zum Thema "Probability learning"
Gozenman, Filiz. „Interaction Of Probability Learning And Working Memory“. Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614535/index.pdf.
Der volle Inhalt der QuelleRYSZ, TERI. „METACOGNITION IN LEARNING ELEMENTARY PROBABILITY AND STATISTICS“. University of Cincinnati / OhioLINK, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1099248340.
Der volle Inhalt der QuelleBouchacourt, Diane. „Task-oriented learning of structured probability distributions“. Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:0665495b-afbb-483b-8bdf-cbc6ae5baeff.
Der volle Inhalt der QuelleLi, Chengtao Ph D. Massachusetts Institute of Technology. „Diversity-inducing probability measures for machine learning“. Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/121724.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (pages 163-176).
Subset selection problems arise in machine learning within kernel approximation, experimental design, and numerous other applications. In such applications, one often seeks to select diverse subsets of items to represent the population. One way to select such diverse subsets is to sample according to Diversity-Inducing Probability Measures (DIPMs) that assign higher probabilities to more diverse subsets. DIPMs underlie several recent breakthroughs in mathematics and theoretical computer science, but their power has not yet been explored for machine learning. In this thesis, we investigate DIPMs, their mathematical properties, sampling algorithms, and applications. Perhaps the best known instance of a DIPM is a Determinantal Point Process (DPP). DPPs originally arose in quantum physics, and are known to have deep relations to linear algebra, combinatorics, and geometry. We explore applications of DPPs to kernel matrix approximation and kernel ridge regression.
In these applications, DPPs deliver strong approximation guarantees and obtain superior performance compared to existing methods. We further develop an MCMC sampling algorithm accelerated by Gauss-type quadratures for DPPs. The algorithm runs several orders of magnitude faster than the existing ones. DPPs lie in a larger class of DIPMs called Strongly Rayleigh (SR) Measures. Instances of SR measures display a strong negative dependence property known as negative association, and as such can be used to model subset diversity. We study mathematical properties of SR measures, and construct the first provably fast-mixing Markov chain that samples from general SR measures. As a special case, we consider an SR measure called Dual Volume Sampling (DVS), for which we present the first poly-time sampling algorithm.
While all considered distributions over subsets are unconstrained, those of interest in the real world usually come with constraints due to prior knowledge, resource limitations or personal preferences. Hence we investigate sampling from constrained versions of DIPMs. Specifically, we consider DIPMs with cardinality constraints and matroid base constraints and construct poly-time approximate sampling algorithms for them. Such sampling algorithms will enable practical uses of constrained DIPMs in real world.
by Chengtao Li.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
Hunt, Gareth David. „Reinforcement Learning for Low Probability High Impact Risks“. Thesis, Curtin University, 2019. http://hdl.handle.net/20.500.11937/77106.
Der volle Inhalt der QuelleSłowiński, Witold. „Autonomous learning of domain models from probability distribution clusters“. Thesis, University of Aberdeen, 2014. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=211059.
Der volle Inhalt der QuelleBenson, Carol Trinko Jones Graham A. „Assessing students' thinking in modeling probability contexts“. Normal, Ill. Illinois State University, 2000. http://wwwlib.umi.com/cr/ilstu/fullcit?p9986725.
Der volle Inhalt der QuelleTitle from title page screen, viewed May 11, 2006. Dissertation Committee: Graham A. Jones (chair), Kenneth N. Berk, Patricia Klass, Cynthia W. Langrall, Edward S. Mooney. Includes bibliographical references (leaves 115-124) and abstract. Also available in print.
Rast, Jeanne D. „A Comparison of Learning Subjective and Traditional Probability in Middle Grades“. Digital Archive @ GSU, 2005. http://digitalarchive.gsu.edu/msit_diss/4.
Der volle Inhalt der QuelleLindsay, David George. „Machine learning techniques for probability forecasting and their practical evaluations“. Thesis, Royal Holloway, University of London, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.445274.
Der volle Inhalt der QuelleKornfeld, Sarah. „Predicting Default Probability in Credit Risk using Machine Learning Algorithms“. Thesis, KTH, Matematisk statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-275656.
Der volle Inhalt der QuelleDenna uppsats har undersökt internt utvecklade modeller för att estimera sannolikheten för utebliven betalning (PD) inom kreditrisk. Samtidigt som nya regelverk sätter restriktioner på metoder för modellering av kreditrisk och i viss mån hämmar utvecklingen av riskmätning, utvecklas samtidigt mer avancerade metoder inom maskinlärning för riskmätning. Således har avvägningen mellan strängare regelverk av internt utvecklade modeller och framsteg i dataanalys undersökts genom jämförelse av modellprestanda för referens metoden logistisk regression för uppskattning av PD med maskininlärningsteknikerna beslutsträd, Random Forest, Gradient Boosting och artificiella neurala nätverk (ANN). Dataunderlaget kommer från SEB och består utav 45 variabler och 24 635 observationer. När maskininlärningsteknikerna blir mer komplexa för att gynna förbättrad prestanda är det ofta på bekostnad av modellens tolkbarhet. En undersökande analys gjordes därför med målet att mäta förklarningsvariablers betydelse i maskininlärningsteknikerna. Resultaten från den undersökande analysen kommer att jämföras med resultat från etablerade metoder som mäter variabelsignifikans. Resultatet av studien visar att den logistiska regressionen presterade bättre än maskininlärningsteknikerna baserat på prestandamåttet AUC som mätte 0.906. Resultatet from den undersökande analysen för förklarningsvariablers betydelse ökade tolkbarheten för maskininlärningsteknikerna. Resultatet blev även validerat med utkomsten av de etablerade metoderna för att mäta variabelsignifikans.
Bücher zum Thema "Probability learning"
Batanero, Carmen, Egan J. Chernoff, Joachim Engel, Hollylynne S. Lee und Ernesto Sánchez. Research on Teaching and Learning Probability. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31625-3.
Der volle Inhalt der QuelleDasGupta, Anirban. Probability for Statistics and Machine Learning. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9634-3.
Der volle Inhalt der QuelleAggarwal, Charu C. Probability and Statistics for Machine Learning. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-53282-5.
Der volle Inhalt der QuelleEgan, J. Chernoff, Engel Joachim, Lee Hollylynne S und Sánchez Ernesto, Hrsg. Research on Teaching and Learning Probability. Cham: Springer, 2016.
Den vollen Inhalt der Quelle findenUnpingco, José. Python for Probability, Statistics, and Machine Learning. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18545-9.
Der volle Inhalt der QuelleUnpingco, José. Python for Probability, Statistics, and Machine Learning. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30717-6.
Der volle Inhalt der QuelleUnpingco, José. Python for Probability, Statistics, and Machine Learning. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04648-3.
Der volle Inhalt der QuellePowell, Warren B. Optimal learning. Hoboken, New Jersey: Wiley, 2012.
Den vollen Inhalt der Quelle findenPeck, Roxy. Statistics: Learning from data. Australia: Brooks/Cole, Cengage Learning, 2014.
Den vollen Inhalt der Quelle findenKnez, Igor. To know what to know before knowing: Acquisition of functional rules in probabilistic ecologies. Uppsala: Uppsala University, 1992.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Probability learning"
Glenberg, Arthur M., und Matthew E. Andrzejewski. „Probability“. In Learning From Data, 105–19. 4. Aufl. New York: Routledge, 2024. http://dx.doi.org/10.4324/9781003025405-6.
Der volle Inhalt der QuelleZeugmann, Thomas, Pascal Poupart, James Kennedy, Xin Jin, Jiawei Han, Lorenza Saitta, Michele Sebag et al. „Posterior Probability“. In Encyclopedia of Machine Learning, 780. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-30164-8_648.
Der volle Inhalt der QuelleZeugmann, Thomas, Pascal Poupart, James Kennedy, Xin Jin, Jiawei Han, Lorenza Saitta, Michele Sebag et al. „Prior Probability“. In Encyclopedia of Machine Learning, 782. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-30164-8_658.
Der volle Inhalt der QuelleKumar Singh, Bikesh, und G. R. Sinha. „Probability Theory“. In Machine Learning in Healthcare, 23–33. New York: CRC Press, 2022. http://dx.doi.org/10.1201/9781003097808-2.
Der volle Inhalt der QuelleUnpingco, José. „Probability“. In Python for Probability, Statistics, and Machine Learning, 35–100. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30717-6_2.
Der volle Inhalt der QuelleUnpingco, José. „Probability“. In Python for Probability, Statistics, and Machine Learning, 39–121. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18545-9_2.
Der volle Inhalt der QuelleUnpingco, José. „Probability“. In Python for Probability, Statistics, and Machine Learning, 47–134. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04648-3_2.
Der volle Inhalt der QuelleFaul, A. C. „Probability Theory“. In A Concise Introduction to Machine Learning, 7–61. Boca Raton, Florida : CRC Press, [2019] | Series: Chapman & Hall/CRC machine learning & pattern recognition: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9781351204750-2.
Der volle Inhalt der QuelleAggarwal, Charu C. „Probability Distributions“. In Probability and Statistics for Machine Learning, 127–90. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-53282-5_4.
Der volle Inhalt der QuelleGhatak, Abhijit. „Probability and Distributions“. In Machine Learning with R, 31–56. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6808-9_2.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Probability learning"
Temlyakov, V. N. „Optimal estimators in learning theory“. In Approximation and Probability. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2006. http://dx.doi.org/10.4064/bc72-0-23.
Der volle Inhalt der QuelleNeville, Jennifer, David Jensen, Lisa Friedland und Michael Hay. „Learning relational probability trees“. In the ninth ACM SIGKDD international conference. New York, New York, USA: ACM Press, 2003. http://dx.doi.org/10.1145/956750.956830.
Der volle Inhalt der QuelleArieli, Itai, Yakov Babichenko und Manuel Mueller-Frank. „Naive Learning Through Probability Matching“. In EC '19: ACM Conference on Economics and Computation. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3328526.3329601.
Der volle Inhalt der QuelleSánchez, Emesta, Sibel Kazak und Egan J. Chernoff. „Teaching and Learning of Probability“. In The 14th International Congress on Mathematical Education. WORLD SCIENTIFIC, 2024. http://dx.doi.org/10.1142/9789811287152_0035.
Der volle Inhalt der QuelleHa, Ming-hu, Zhi-fang Feng, Er-ling Du und Yun-chao Bai. „Further Discussion on Quasi-Probability“. In 2006 International Conference on Machine Learning and Cybernetics. IEEE, 2006. http://dx.doi.org/10.1109/icmlc.2006.258542.
Der volle Inhalt der QuelleBurgos, María, María Del Mar López-Martín und Nicolás Tizón-Escamilla. „ALGEBRAIC REASONING IN PROBABILITY TASKS“. In 14th International Conference on Education and New Learning Technologies. IATED, 2022. http://dx.doi.org/10.21125/edulearn.2022.0777.
Der volle Inhalt der QuelleHerlau, Tue. „Active learning of causal probability trees“. In 2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA). IEEE, 2022. http://dx.doi.org/10.1109/icmla55696.2022.00193.
Der volle Inhalt der QuelleEugênio, Robson, Carlos Monteiro, Liliane Carvalho, José Roberto Costa Jr. und Karen François. „MATHEMATICS TEACHERS LEARNING ABOUT PROBABILITY LITERACY“. In 14th International Technology, Education and Development Conference. IATED, 2020. http://dx.doi.org/10.21125/inted.2020.0272.
Der volle Inhalt der QuelleStruski, Łukasz, Adam Pardyl, Jacek Tabor und Bartosz Zieliński. „ProPML: Probability Partial Multi-label Learning“. In 2023 IEEE 10th International Conference on Data Science and Advanced Analytics (DSAA). IEEE, 2023. http://dx.doi.org/10.1109/dsaa60987.2023.10302620.
Der volle Inhalt der QuelleRamishetty, Sravani, und Abolfazl Hashemi. „High Probability Guarantees For Federated Learning“. In 2023 59th Annual Allerton Conference on Communication, Control, and Computing (Allerton). IEEE, 2023. http://dx.doi.org/10.1109/allerton58177.2023.10313468.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Probability learning"
Shute, Valerie J., und Lisa A. Gawlick-Grendell. An Experimental Approach to Teaching and Learning Probability: Stat Lady. Fort Belvoir, VA: Defense Technical Information Center, April 1996. http://dx.doi.org/10.21236/ada316969.
Der volle Inhalt der QuelleIlyin, M. E. The distance learning course «Theory of probability, mathematical statistics and random functions». OFERNIO, Dezember 2018. http://dx.doi.org/10.12731/ofernio.2018.23529.
Der volle Inhalt der QuelleKriegel, Francesco. Learning description logic axioms from discrete probability distributions over description graphs (Extended Version). Technische Universität Dresden, 2018. http://dx.doi.org/10.25368/2022.247.
Der volle Inhalt der QuelleKriegel, Francesco. Learning General Concept Inclusions in Probabilistic Description Logics. Technische Universität Dresden, 2015. http://dx.doi.org/10.25368/2022.220.
Der volle Inhalt der QuelleGribok, Andrei V., Kevin P. Chen und Qirui Wang. Machine-Learning Enabled Evaluation of Probability of Piping Degradation In Secondary Systems of Nuclear Power Plants. Office of Scientific and Technical Information (OSTI), Mai 2020. http://dx.doi.org/10.2172/1634815.
Der volle Inhalt der Quellede Luis, Mercedes, Emilio Rodríguez und Diego Torres. Machine learning applied to active fixed-income portfolio management: a Lasso logit approach. Madrid: Banco de España, September 2023. http://dx.doi.org/10.53479/33560.
Der volle Inhalt der QuelleDinarte, Lelys, Pablo Egaña del Sol und Claudia Martínez. When Emotion Regulation Matters: The Efficacy of Socio-Emotional Learning to Address School-Based Violence in Central America. Inter-American Development Bank, März 2024. http://dx.doi.org/10.18235/0012854.
Der volle Inhalt der QuelleMoreno Pérez, Carlos, und Marco Minozzo. “Making Text Talk”: The Minutes of the Central Bank of Brazil and the Real Economy. Madrid: Banco de España, November 2022. http://dx.doi.org/10.53479/23646.
Der volle Inhalt der QuelleRobson, Jennifer. The Canada Learning Bond, financial capability and tax-filing: Results from an online survey of low and modest income parents. SEED Winnipeg/Carleton University Arthur Kroeger College of Public Affairs, März 2022. http://dx.doi.org/10.22215/clb20220301.
Der volle Inhalt der QuelleSchiefelbein, Ernesto, Paulina Schiefelbein und Laurence Wolff. Cost-Effectiveness of Education Policies in Latin America: A Survey of Expert Opinion. Inter-American Development Bank, Dezember 1998. http://dx.doi.org/10.18235/0008789.
Der volle Inhalt der Quelle