Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Probabilities.

Zeitschriftenartikel zum Thema „Probabilities“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Probabilities" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Mugur-Sch�chter, Mioara. „Quantum probabilities, Kolmogorov probabilities, and informational probabilities“. International Journal of Theoretical Physics 33, Nr. 1 (Januar 1994): 53–90. http://dx.doi.org/10.1007/bf00671614.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Yukalov, Vyacheslav, und Didier Sornette. „Quantum Probabilities as Behavioral Probabilities“. Entropy 19, Nr. 3 (13.03.2017): 112. http://dx.doi.org/10.3390/e19030112.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Czeiszperger, Michael, und Stephen Jeske. „Probabilities“. Computer Music Journal 14, Nr. 2 (1990): 68. http://dx.doi.org/10.2307/3679716.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Fang, Di, Jenny Chong und Jeffrey R. Wilson. „Predicted Probabilities' Relationship to Inclusion Probabilities“. American Journal of Public Health 105, Nr. 5 (Mai 2015): 837–39. http://dx.doi.org/10.2105/ajph.2015.302592.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Hájek, Alan. „Probabilities of counterfactuals and counterfactual probabilities“. Journal of Applied Logic 12, Nr. 3 (September 2014): 235–51. http://dx.doi.org/10.1016/j.jal.2013.11.001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Lewis, David. „Probabilities of Conditionals and Conditional Probabilities II“. Philosophical Review 95, Nr. 4 (Oktober 1986): 581. http://dx.doi.org/10.2307/2185051.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Barmpalias, George, und Andrew Lewis-Pye. „Computing halting probabilities from other halting probabilities“. Theoretical Computer Science 660 (Januar 2017): 16–22. http://dx.doi.org/10.1016/j.tcs.2016.11.013.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Fréché, Jean-Pierre. „Des probabilités négatives ?“ Revue des questions scientifiques 193, Nr. 1-2 (01.01.2022): 49–68. http://dx.doi.org/10.14428/qs.v193i1-2.70203.

Der volle Inhalt der Quelle
Annotation:
Jusqu’en 1932, les probabilités, tant en mathématique qu’en physique, étaient positives. Mais cette année-là, Wigner publia un article qui introduisait en physique statistique quantique une distribution de probabilités prenant aussi bien des valeurs négatives que des valeurs positives. Le texte qui suit établit d’abord brièvement un parallèle entre l’avènement des nombres négatifs et des nombres complexes au XVIe siècle d’une part, et l’avènement des probabilités négatives au XXe siècle d’autre part. Puis il décrit un « dispositif de pensée » qui propose des probabilités positives et négatives ; il en donne une critique. Ensuite, il expose une expérience plus réelle — diffusion de particules le long d’une tige infinie — qui fait apparaître des probabilités négatives et spécifie le type d’événements auxquelles elles sont attachées dans ce cas. Une comparaison est faite avec le « dispositif de pensée ». Enfin, il explique en quoi la distribution de Wigner étend à la mécanique quantique la distribution classique de Liouville attachée à l’espace de phase de la physique statistique classique. Il conclut en décrivant les pistes sur lesquelles s’est engagée la recherche dans le domaine des probabilités négatives et revient sur le parallèle initialement établi avec les nombres négatifs et les nombres complexes. * * * Until 1932, in both mathematics and physics, probabilities were positive. In the course of that year, however, Wigner published an article that introduced a probability distribution which incorporated negative values along with positive ones into quantum statistical physics. The present article opens by drawing a succinct parallel between the emergence of negative numbers and complex numbers in the 16th century, on the one hand, and the advent of negative probabilities in the 20th century, on the other hand. It then goes on to describe a “thought model” offering positive and negative probabilities, which is evaluated. Next, a more concrete experiment is addressed — the diffusion of particles along an infinite line —, which reveals the negative probabilities and specifies to which events these are linked in this particular case. This experiment is then compared to the “thought model”. Lastly, an explanation of how the Wigner distribution extends to quantum mechanics, through the standard Liouville distribution associated with the phase space of mainstream statistical physics, is presented. The conclusion expounds upon the various paths of research within the field of negative probabilities, and revisits the initial parallel established between negative numbers and complex numbers.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Grunwald, P. D., und J. Y. Halpern. „Updating Probabilities“. Journal of Artificial Intelligence Research 19 (01.10.2003): 243–78. http://dx.doi.org/10.1613/jair.1164.

Der volle Inhalt der Quelle
Annotation:
As examples such as the Monty Hall puzzle show, applying conditioning to update a probability distribution on a ``naive space'', which does not take into account the protocol used, can often lead to counterintuitive results. Here we examine why. A criterion known as CAR (``coarsening at random'') in the statistical literature characterizes when ``naive'' conditioning in a naive space works. We show that the CAR condition holds rather infrequently, and we provide a procedural characterization of it, by giving a randomized algorithm that generates all and only distributions for which CAR holds. This substantially extends previous characterizations of CAR. We also consider more generalized notions of update such as Jeffrey conditioning and minimizing relative entropy (MRE). We give a generalization of the CAR condition that characterizes when Jeffrey conditioning leads to appropriate answers, and show that there exist some very simple settings in which MRE essentially never gives the right results. This generalizes and interconnects previous results obtained in the literature on CAR and MRE.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Warrington, Gregory S. „Juggling Probabilities“. American Mathematical Monthly 112, Nr. 2 (01.02.2005): 105. http://dx.doi.org/10.2307/30037409.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

McVey, Jack L., Anthony Kettaneh, Tibor R. Machan, John Bryant und Alfred R. Beronio. „Future Probabilities“. Science News 135, Nr. 9 (04.03.1989): 131. http://dx.doi.org/10.2307/3973594.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Jeffrey, Richard. „Unknown probabilities“. Erkenntnis 45, Nr. 2-3 (November 1996): 327–35. http://dx.doi.org/10.1007/bf00276797.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Pruss, A. R. „Conditional probabilities“. Analysis 72, Nr. 3 (01.06.2012): 488–91. http://dx.doi.org/10.1093/analys/ans076.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Hansson, Sven Ove. „Past Probabilities“. Notre Dame Journal of Formal Logic 51, Nr. 2 (April 2010): 207–23. http://dx.doi.org/10.1215/00294527-2010-013.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Dassios, Angelos. „Ruin Probabilities“. Journal of the American Statistical Association 97, Nr. 460 (Dezember 2002): 1211–12. http://dx.doi.org/10.1198/jasa.2002.s243.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Fletcher, J. „Conditional probabilities“. BMJ 338, jan14 3 (14.01.2009): b113. http://dx.doi.org/10.1136/bmj.b113.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Benci, Vieri, Leon Horsten und Sylvia Wenmackers. „Infinitesimal Probabilities“. British Journal for the Philosophy of Science 69, Nr. 2 (01.06.2018): 509–52. http://dx.doi.org/10.1093/bjps/axw013.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Litwiller, Bonnie H., und David R. Duncan. „Keno Probabilities“. School Science and Mathematics 87, Nr. 1 (Januar 1987): 33–39. http://dx.doi.org/10.1111/j.1949-8594.1987.tb17216.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Warrington, Gregory S. „Juggling Probabilities“. American Mathematical Monthly 112, Nr. 2 (Februar 2005): 105–18. http://dx.doi.org/10.1080/00029890.2005.11920175.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Roon, Hannah. „Statistical probabilities“. Pigment & Resin Technology 16, Nr. 6 (Juni 1987): 4. http://dx.doi.org/10.1108/eb042366.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Hartigan, J. A., und T. B. Murphy. „Inferred probabilities“. Journal of Statistical Planning and Inference 105, Nr. 1 (Juni 2002): 23–34. http://dx.doi.org/10.1016/s0378-3758(01)00202-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

DE COOMAN, GERT. „Imprecise probabilities“. Risk Decision and Policy 5, Nr. 2 (Juni 2000): 107–9. http://dx.doi.org/10.1017/s135753090000017x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Jonah, Charles D. „Cheating Probabilities“. Journal of Chemical Education 75, Nr. 9 (September 1998): 1089. http://dx.doi.org/10.1021/ed075p1089.3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

George, Glyn. „Parallel probabilities“. Mathematical Gazette 104, Nr. 560 (18.06.2020): 271–80. http://dx.doi.org/10.1017/mag.2020.50.

Der volle Inhalt der Quelle
Annotation:
After several years of teaching an introduction to probability and statistics for engineering degree students, my attention has been captured by some variations on the familiar general addition law of probability. Network analysis of components connected in parallel is one of many applications.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Milne, Peter. „Physical probabilities“. Synthese 73, Nr. 2 (November 1987): 329–59. http://dx.doi.org/10.1007/bf00484746.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Maas, Kees, Marco Steenbergen und Willem Saris. „Vote probabilities“. Electoral Studies 9, Nr. 2 (Juni 1990): 91–107. http://dx.doi.org/10.1016/0261-3794(90)90002-p.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Skilling, John. „Prior probabilities“. Synthese 63, Nr. 1 (April 1985): 1–34. http://dx.doi.org/10.1007/bf00485953.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Drossos, C. A., und P. L. Theodoropoulos. „-fuzzy probabilities“. Fuzzy Sets and Systems 78, Nr. 3 (März 1996): 355–69. http://dx.doi.org/10.1016/0165-0114(96)84617-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Uzhga-Rebrov, O. „UNCERTAIN PROBABILITIES“. Environment. Technology. Resources. Proceedings of the International Scientific and Practical Conference 1 (26.06.2006): 377. http://dx.doi.org/10.17770/etr2003vol1.2020.

Der volle Inhalt der Quelle
Annotation:
The uncertainty of probabilistic evaluations results from the lack of sufficient information and/or knowledge underlying those random events. Uncertainty representation in the form of second order probability distribution or interval evaluations does not cause any objections from the theoretical point of view. On the other hand, what is worthy in the second order probabilities is that they allow one to model a real uncertainty of subjective probabilistic evaluations resulting from the lack of information and/or knowledge. Processing of uncertain information regarding probabilistic evaluations can help make a validated decision about the collection of additional information aimed to remove completely or to reduce the existing uncertainty.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Pharoah, P. D. P. „Balancing probabilities“. BMJ 342, may17 2 (17.05.2011): d3048. http://dx.doi.org/10.1136/bmj.d3048.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Dubucs, J. „Embedded probabilities“. Theory and Decision 30, Nr. 3 (Mai 1991): 279–84. http://dx.doi.org/10.1007/bf00132448.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Viscusi, W. Kip, und William N. Evans. „Behavioral Probabilities“. Journal of Risk and Uncertainty 32, Nr. 1 (Januar 2006): 5–15. http://dx.doi.org/10.1007/s10797-006-6663-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Easton, Kristen L. „Distinct Probabilities“. Rehabilitation Nursing 19, Nr. 5 (10.09.1994): 303–4. http://dx.doi.org/10.1002/j.2048-7940.1994.tb00828.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Gorski, Andrew. „Chi-Square Probabilities are Poisson Probabilities in Disguise“. IEEE Transactions on Reliability R-34, Nr. 3 (August 1985): 209–11. http://dx.doi.org/10.1109/tr.1985.5222117.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Khrennikov, Andrei. „CHSH Inequality: Quantum Probabilities as Classical Conditional Probabilities“. Foundations of Physics 45, Nr. 7 (09.11.2014): 711–25. http://dx.doi.org/10.1007/s10701-014-9851-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Li, Xiaoou, und Jingchen Liu. „Rare-event simulation and efficient discretization for the supremum of Gaussian random fields“. Advances in Applied Probability 47, Nr. 3 (September 2015): 787–816. http://dx.doi.org/10.1239/aap/1444308882.

Der volle Inhalt der Quelle
Annotation:
In this paper we consider a classic problem concerning the high excursion probabilities of a Gaussian random fieldfliving on a compact setT. We develop efficient computational methods for the tail probabilitiesℙ{supTf(t) >b}. For each positive ε, we present Monte Carlo algorithms that run inconstanttime and compute the probabilities with relative error ε for arbitrarily largeb. The efficiency results are applicable to a large class of Hölder continuous Gaussian random fields. Besides computations, the change of measure and its analysis techniques have several theoretical and practical indications in the asymptotic analysis of Gaussian random fields.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Li, Xiaoou, und Jingchen Liu. „Rare-event simulation and efficient discretization for the supremum of Gaussian random fields“. Advances in Applied Probability 47, Nr. 03 (September 2015): 787–816. http://dx.doi.org/10.1017/s0001867800048837.

Der volle Inhalt der Quelle
Annotation:
In this paper we consider a classic problem concerning the high excursion probabilities of a Gaussian random fieldfliving on a compact setT. We develop efficient computational methods for the tail probabilitiesℙ{supTf(t) >b}. For each positive ε, we present Monte Carlo algorithms that run inconstanttime and compute the probabilities with relative error ε for arbitrarily largeb. The efficiency results are applicable to a large class of Hölder continuous Gaussian random fields. Besides computations, the change of measure and its analysis techniques have several theoretical and practical indications in the asymptotic analysis of Gaussian random fields.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Dhami, Mandeep K., und Thomas S. Wallsten. „Interpersonal comparison of subjective probabilities: Toward translating linguistic probabilities“. Memory & Cognition 33, Nr. 6 (September 2005): 1057–68. http://dx.doi.org/10.3758/bf03193213.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Rédel, Miklós. „Quantum conditional probabilities are not probabilities of quantum conditional“. Physics Letters A 139, Nr. 7 (August 1989): 287–90. http://dx.doi.org/10.1016/0375-9601(89)90454-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Suppes, Patrick, und Mario Zanotti. „Conditions on upper and lower probabilities to imply probabilities“. Erkenntnis 31, Nr. 2-3 (September 1989): 323–45. http://dx.doi.org/10.1007/bf01236568.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Syukur, Andi Abd khaliq, Aquarini Priyatna und Lina Meilinawati Rahayu. „KEMATIAN DAN PERASAAN KEHILANGAN: KONSTRUKSI IDENTITAS QUEER DALAM EMPAT KARYA YOSHIMOTO (Death And Sense of Loss: Queer Identity Construction in Four Yoshimoto’s Works)“. METASASTRA: Jurnal Penelitian Sastra 8, Nr. 2 (06.06.2016): 193. http://dx.doi.org/10.26610/metasastra.2015.v8i2.193-210.

Der volle Inhalt der Quelle
Annotation:
Empat novelet Yoshimoto, yaitu Kitchen (1988), Moonlight Shadow (1988), Hardboiled (2001), dan Hardluck (2001) menghadirkan kematian dan perasaan kehilangan di awal narasi. Kematian dan perasaan kehilangan membuka probabilitas baru sebagai bagian konstruksi identitas queer, seperti kematian sebagai pemutusan matrix heteroseksual, perasaan kehilangan sebagai perubahan identitas gender, penerimaan orang asing sebagai anggota keluarga, hubungan bersifat inses, homoseksualitas perempuan, transgenderisme, dan perubahan peran dalam anggota keluarga. Penelitian ini dilakukan untuk menganalisis cara kematian dan perasaan kehilangan membuka probabilitas identitas queer dalam narasi Yoshimoto. Sedangkan untuk melihat bentuk identitas queer, penelitian ini menggunakan teori performativitas dari Butler untuk menunjukkan ketaksaan identitas gender dan seks.Hasil penelitian menunjukkan kematian dapat membuka probabilitias yang mengarah pada penghadiran identitas queer dan performativitas identitas queer menyajikan performativitas tokoh yang terus-menerus berubah, bergerak, dan tidak memiliki pusat.Abstract: Four novelettes of Yoshimoto’s, which are Kitchen (1988), Moonlight Shadow (1988), Hardboiled (2001), and Hard Luck (2001) bring death and sense of loss in the beginning of the narrative. The death and sense of loss give new probabilities as parts of the queer identity constructions, for instance the death as the partition of the heterosexual matrix, the loss feelings as a gender identity alteration, agree to accept foreigners as members of the family, the relationship tend to be incest, female homosexuality, transgenderism, and change the family members role. This study conducted to analyze the way of death and loss feelings give probabilities of queer identity in the Yoshimoto’s narration.As for seeing theshape ofqueeridentity, The research applies Butler’s thinking on gender performativity to analyze how ambiguous sexual and gender identities are presented. The research finds that the probabilityof deathcanopen upleads toqueeridentity and the analysis of queer identity’s performativity on character’s performativity in the novelettes renders it possible for sexual and gender construction to be constantly changing and everlastingly displaced performances.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Bartoszek, Wojciech. „On concentrated probabilities“. Annales Polonici Mathematici 61, Nr. 1 (1995): 25–38. http://dx.doi.org/10.4064/ap-61-1-25-38.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Papineau, David. „Probabilities and Causes“. Journal of Philosophy 82, Nr. 2 (Februar 1985): 57. http://dx.doi.org/10.2307/2026555.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Widen, Holly M., James B. Elsner, Rizalino B. Cruz, Guang Xing, Erik Fraza, Loury Migliorelli, Sarah Strazzo et al. „Adjusted Tornado Probabilities“. E-Journal of Severe Storms Meteorology 8, Nr. 7 (05.10.2021): 1–12. http://dx.doi.org/10.55599/ejssm.v8i7.52.

Der volle Inhalt der Quelle
Annotation:
Tornado occurrence rates computed from the available reports are biased low relative to the unknown true rates. To correct for this low bias, the authors demonstrate a method to estimate the annual probability of being struck by a tornado that uses the average report density estimated as a function of distance from nearest city/town center. The method is demonstrated on Kansas and then applied to 15 other tornado-prone states from Nebraska to Tennessee. States are ranked according to their adjusted tornado rate and comparisons are made with raw rates published elsewhere. The adjusted rates, expressed as return periods, are <1250 y for four states, including Alabama, Mississippi, Arkansas, and Oklahoma. The expected annual number of people exposed to tornadoes is highest for Illinois followed by Alabama and Indiana. For the four states with the highest tornado rates, exposure increases since 1980 are largest for Oklahoma (24%) and Alabama (23%).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Page, Don N. „Possibilities for probabilities“. Journal of Cosmology and Astroparticle Physics 2022, Nr. 10 (01.10.2022): 023. http://dx.doi.org/10.1088/1475-7516/2022/10/023.

Der volle Inhalt der Quelle
Annotation:
Abstract In ordinary situations involving a small part of the universe, Born's rule seems to work well for calculating probabilities of observations in quantum theory. However, there are a number of reasons for believing that it is not adequate for many cosmological purposes. Here a number of possible generalizations of Born's rule are discussed, explaining why they are consistent with the present statistical support for Born's rule in ordinary situations but can help solve various cosmological problems.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Drees, Holger, und Laurens de Haan. „Estimating failure probabilities“. Bernoulli 21, Nr. 2 (Mai 2015): 957–1001. http://dx.doi.org/10.3150/13-bej594.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Fletcher, Mike. „CALCULATING DEPENDENT PROBABILITIES“. Mathematics Enthusiast 6, Nr. 1-2 (01.01.2009): 91–94. http://dx.doi.org/10.54870/1551-3440.1137.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Gottschalk, Lars. „Regional Exceedance Probabilities“. Hydrology Research 20, Nr. 4-5 (01.08.1989): 201–14. http://dx.doi.org/10.2166/nh.1989.0016.

Der volle Inhalt der Quelle
Annotation:
Construction of a regional flood frequency curve is based, as a rule, on fitting this curve to representative quantiles. In a regional sample of floods the probability of extreme values corresponding to return periods, that exceed the record lengths, is much larger than that of individual series, used to determine the representative quantiles. The probabilities of exceedance of regional extremes can be calculated straightforward in case of independent data, applying the theory of order statistics. For regionally dependent data one can define an equivalent number of independent regional series and then utilize the theory for independent data. This approach is exemplified with flood data from Norway.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Karni, Edi, und Zvi Safra. „Rank-Dependent Probabilities“. Economic Journal 100, Nr. 401 (Juni 1990): 487. http://dx.doi.org/10.2307/2234135.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Honda, Hidehito, und Kimihiko Yamagishi. „Directional Verbal Probabilities“. Experimental Psychology 53, Nr. 3 (Januar 2006): 161–70. http://dx.doi.org/10.1027/1618-3169.53.3.161.

Der volle Inhalt der Quelle
Annotation:
Verbal probability expressions (e.g., it is possible or doubtful) convey not only vague numerical meanings (i.e., probability) but also semantic functions, called directionality. We performed two experiments to examine whether preferential judgments are consistent with numerical meanings of verbal probabilities regardless of directionality. The results showed that because of the effects of directionality, perceived degrees of certainty for verbal probabilities differed between a binary choice and a numerical translation (Experiment 1), and decisions based on a verbal probability do not correspond to those based on a numerical translation for verbal probabilities (Experiment 2). These findings suggest that directionality of verbal probabilities is an independent feature from numerical meanings; hence numerical meanings of verbal probability alone remain insufficient to explain the effects of directionality on preferential judgments.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie