Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Probabilistic number theory“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Probabilistic number theory" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Probabilistic number theory"
Indlekofer, K. H. „Number theory—probabilistic, heuristic, and computational approaches“. Computers & Mathematics with Applications 43, Nr. 8-9 (April 2002): 1035–61. http://dx.doi.org/10.1016/s0898-1221(02)80012-8.
Der volle Inhalt der QuelleStakėnas, V. „On some inequalities of probabilistic number theory“. Lithuanian Mathematical Journal 46, Nr. 2 (April 2006): 208–16. http://dx.doi.org/10.1007/s10986-006-0022-2.
Der volle Inhalt der QuelleErdõs, P. „Recent problems in probabilistic number theory and combinatorics“. Advances in Applied Probability 24, Nr. 4 (Dezember 1992): 766–67. http://dx.doi.org/10.1017/s0001867800024654.
Der volle Inhalt der QuelleStakėnas, Vilius. „Jonas Kubilius and genesis of probabilistic number theory“. Lithuanian Mathematical Journal 55, Nr. 1 (Januar 2015): 25–47. http://dx.doi.org/10.1007/s10986-015-9263-2.
Der volle Inhalt der QuelleZhang, Wen-Bin. „Probabilistic number theory in additive arithmetic semigroups II“. Mathematische Zeitschrift 235, Nr. 4 (01.12.2000): 747–816. http://dx.doi.org/10.1007/s002090000165.
Der volle Inhalt der QuelleElliott, P. D. T. A. „Jonas Kubilius and Probabilistic Number Theory Some Personal Reflections“. Lithuanian Mathematical Journal 55, Nr. 1 (Januar 2015): 2–24. http://dx.doi.org/10.1007/s10986-015-9262-3.
Der volle Inhalt der QuelleDaili, Noureddine. „DENSITIES AND NATURAL INTEGRABILITY. APPLICATIONS IN PROBABILISTIC NUMBER THEORY“. JP Journal of Algebra, Number Theory and Applications 47, Nr. 1 (01.07.2020): 51–65. http://dx.doi.org/10.17654/nt047010051.
Der volle Inhalt der QuelleLokutsievskiy, Lev V. „Optimal probabilistic search“. Sbornik: Mathematics 202, Nr. 5 (31.05.2011): 697–719. http://dx.doi.org/10.1070/sm2011v202n05abeh004162.
Der volle Inhalt der QuelleAistleitner, Christoph, und Christian Elsholtz. „The Central Limit Theorem for Subsequences in Probabilistic Number Theory“. Canadian Journal of Mathematics 64, Nr. 6 (01.12.2012): 1201–21. http://dx.doi.org/10.4153/cjm-2011-074-1.
Der volle Inhalt der QuelleHaik, Sumayra. „AFFINE LINES AND ADVANCED PROBABILISTIC MODEL THEORY“. Mathematical Statistician and Engineering Applications 70, Nr. 2 (26.02.2021): 01–14. http://dx.doi.org/10.17762/msea.v70i2.8.
Der volle Inhalt der QuelleDissertationen zum Thema "Probabilistic number theory"
Harper, Adam James. „Some topics in analytic and probabilistic number theory“. Thesis, University of Cambridge, 2012. https://www.repository.cam.ac.uk/handle/1810/265539.
Der volle Inhalt der QuelleHughes, Garry. „Distribution of additive functions in algebraic number fields“. Title page, contents and summary only, 1987. http://web4.library.adelaide.edu.au/theses/09SM/09smh893.pdf.
Der volle Inhalt der QuelleZhao, Wenzhong. „Probabilistic databases and their application“. Lexington, Ky. : [University of Kentucky Libraries], 2004. http://lib.uky.edu/ETD/ukycosc2004d00183/wzhao0.pdf.
Der volle Inhalt der QuelleTitle from document title page (viewed Jan. 7, 2005). Document formatted into pages; contains x, 180p. : ill. Includes abstract and vita. Includes bibliographical references (p. 173-178).
Lloyd, James Robert. „Representation, learning, description and criticism of probabilistic models with applications to networks, functions and relational data“. Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.709264.
Der volle Inhalt der QuelleLi, Xiang, und 李想. „Managing query quality in probabilistic databases“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2011. http://hub.hku.hk/bib/B47753134.
Der volle Inhalt der Quellepublished_or_final_version
Computer Science
Master
Master of Philosophy
Rotondo, Pablo. „Probabilistic studies in number theory and word combinatorics : instances of dynamical analysis“. Thesis, Sorbonne Paris Cité, 2018. http://www.theses.fr/2018USPCC213/document.
Der volle Inhalt der QuelleDynamical Analysis incorporates tools from dynamical systems, namely theTransfer Operator, into the framework of Analytic Combinatorics, permitting the analysis of numerous algorithms and objects naturally associated with an underlying dynamical system.This dissertation presents, in the integrated framework of Dynamical Analysis, the probabilistic analysis of seemingly distinct problems in a unified way: the probabilistic study of the recurrence function of Sturmian words, and the probabilistic study of the Continued Logarithm algorithm.Sturmian words are a fundamental family of words in Word Combinatorics. They are in a precise sense the simplest infinite words that are not eventually periodic. Sturmian words have been well studied over the years, notably by Morse and Hedlund (1940) who demonstrated that they present a notable number theoretical characterization as discrete codings of lines with irrationalslope, relating them naturally to dynamical systems, in particular the Euclidean dynamical system. These words have never been studied from a probabilistic perspective. Here, we quantify the recurrence properties of a ``random'' Sturmian word, which are dictated by the so-called ``recurrence function''; we perform a complete asymptotic probabilistic study of this function, quantifying its mean and describing its distribution under two different probabilistic models, which present different virtues: one is a naturaly choice from an algorithmic point of view (but is innovative from the point of view of dynamical analysis), while the other allows a natural quantification of the worst-case growth of the recurrence function. We discuss the relation between these two distinct models and their respective techniques, explaining also how the two seemingly different techniques employed could be linked through the use of the Mellin transform. In this dissertation we also discuss our ongoing work regarding two special families of Sturmian words: those associated with a quadratic irrational slope, and those with a rational slope (not properly Sturmian). Our work seems to show the possibility of a unified study.The Continued Logarithm Algorithm, introduced by Gosper in Hakmem (1978) as a mutation of classical continued fractions, computes the greatest common divisor of two natural numbers by performing division-like steps involving only binary shifts and substractions. Its worst-case performance was studied recently by Shallit (2016), who showed a precise upper-bound for the number of steps and gave a family of inputs attaining this bound. In this dissertation we employ dynamical analysis to study the average running time of the algorithm, giving precise mathematical constants for the asymptotics, as well as other parameters of interest. The underlying dynamical system is akin to the Euclidean one, and was first studied by Chan (around 2005) from an ergodic, but the presence of powers of 2 in the quotients ingrains into the central parameters a dyadic flavour that cannot be grasped solely by studying this system. We thus introduce a dyadic component and deal with a two-component system. With this new mixed system at hand, we then provide a complete average-case analysis of the algorithm by Dynamical Analysis
Pariente, Cesar Alberto Bravo. „Um método probabilístico em combinatória“. Universidade de São Paulo, 1996. http://www.teses.usp.br/teses/disponiveis/45/45132/tde-07052010-163719/.
Der volle Inhalt der QuelleThe following work is an effort to present, in survey form, a collection of results that illustrate the application of a certain probabilistic method in combinatorics. We do not present new results in the area; however, we do believe that the systematic presentation of these results can help those who use probabilistic methods comprenhend this useful technique. The results we refer to have appeared over the last decade in the research literature and were used in the investigation of problems which have resisted other, more classical, approaches. Instead of theorizing about the method, we adopted the strategy of presenting three problems, using them as practical examples of the application of the method in question. Surpisingly, despite the difficulty of solutions to these problems, they share the characteristic of being able to be formulated very intuitively, as we will see in Chapter One. We should warn the reader that despite the fact that the problems which drive our discussion belong to such different fields as number theory, geometry and combinatorics, our goal is to place emphasis on what their solutions have in common and not on the subsequent implications that these problems have in their respective fields. Occasionally, we will comment on other potential applications of the tools utilized to solve these problems. The problems which we are discussing can be characterized by the decades-long wait for their solution: the first, from number theory, arose from the research in Fourier series conducted by Sidon at the beginning of the century and was proposed by him to Erdös in 1932. Since 1950, there have been diverse advances in the understanding of this problem, but the result we talk of comes from 1981. The second problem, from geometry, is a conjecture formulated in 1951 by Heilbronn and finally refuted in 1982. The last problem, from combinatorics, is a conjecture formulated by Erdös and Hanani in 1963 that was treated in several particular cases but was only solved in its entirety in 1985.
Schimit, Pedro Henrique Triguis. „Modelagem e controle de propagação de epidemias usando autômatos celulares e teoria de jogos“. Universidade de São Paulo, 2010. http://www.teses.usp.br/teses/disponiveis/3/3139/tde-05122011-153541/.
Der volle Inhalt der QuelleThe spreading of contagious diseases is studied by using susceptible-infected-recovered (SIR) models represented by ordinary differential equations (ODE) and by probabilistic cellular automata (PCA) connected by random networks. Each individual (cell) of the PCA lattice experiences the influence of others, where the probability of occurring interaction with the nearest ones is higher. Simulations for investigating how the disease propagation is affected by the coupling topology of the population are performed. The numerical results obtained with the model based on randomly connected PCA are compared to the results obtained with the model described by ODE. It is concluded that considering the topological structure of the population can pose difficulties for characterizing the disease, from the observation of the time evolution of the number of infected individuals. It is also concluded that isolating a few infected subjects can cause the same effect than isolating many susceptible individuals. Furthermore, a vaccination strategy based on game theory is analyzed. In this game, the government tries to minimize the expenses for controlling the epidemic. As consequence, the government implements quasi-periodic vaccination campaigns.
Silva, Everton Juliano da. „Uma demonstração analítica do teorema de Erdös-Kac“. Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-24032015-132813/.
Der volle Inhalt der QuelleIn number theory, the Erdös-Kac theorem, also known as the fundamental theorem of probabilistic number theory, states that if w(n) is the number of distinct prime factors of n, then the sequence of distribution functions N, defined by FN(x) = (1/N) #{n <= N : (w(n) log log N)/(log log N)^(1/2)} <= x}, converges uniformly on R to the standard normal distribution. In this work we developed all theorems needed to an analytic demonstration, which will allow us to find an order of error of the above convergence.
Shi, Lingsheng. „Numbers and topologies“. Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2003. http://dx.doi.org/10.18452/14871.
Der volle Inhalt der QuelleIn graph Ramsey theory, Burr and Erdos in 1970s posed two conjectures which may be considered as initial steps toward the problem of characterizing the set of graphs for which Ramsey numbers grow linearly in their orders. One conjecture is that Ramsey numbers grow linearly for all degenerate graphs and the other is that Ramsey numbers grow linearly for cubes. Though unable to settle these two conjectures, we have contributed many weaker versions that support the likely truth of the first conjecture and obtained a polynomial upper bound for the Ramsey numbers of cubes that considerably improves all previous bounds and comes close to the linear bound in the second conjecture. In topological Ramsey theory, Kojman recently observed a topological converse of Hindman's theorem and then introduced the so-called Hindman space and van der Waerden space (both of which are stronger than sequentially compact spaces) corresponding respectively to Hindman's theorem and van der Waerden's theorem. In this thesis, we will strengthen the topological converse of Hindman's theorem by using canonical Ramsey theorem, and introduce differential compactness that arises naturally in this context and study its relations to other spaces as well. Also by using compact dynamical systems, we will extend a classical Ramsey type theorem of Brown and Hindman et al on piecewise syndetic sets from natural numbers and discrete semigroups to locally connected semigroups.
Bücher zum Thema "Probabilistic number theory"
Introduction to analytic and probabilistic number theory. Cambridge: Cambridge University Press, 1995.
Den vollen Inhalt der Quelle findenJie xi yu gai lü shu lun dao yin: Jiexi yu gailü shulun daoyin. Beijing: Gao deng jiao yu chu ban she, 2011.
Den vollen Inhalt der Quelle findenProbabilistic databases. San Rafael, Calif. (1537 Fourth Street, San Rafael, CA 94901 USA): Morgan & Claypool, 2011.
Den vollen Inhalt der Quelle findenKubilius, Jonas. Analiziniai ir tikimybiniai metodai skaičių teorijoje: Trečiosios tarptautines konferencijos J. Kubiliaus garbei darbų rinkinys / redaktoriai, A. Dubickas, A. Laurinčikas, E. Manstavičius = Analytic and probabilistic methods in number theory : proceedings of the third international conference in honour of J. Kubilius, Palanga, Lithuania, 24-28 September 2001. Vilnius: TEV, 2002.
Den vollen Inhalt der Quelle findenLaurincikas, E., E. Manstavicius und V. Stakenas, Hrsg. Analytic and Probabilistic Methods in Number Theory. Berlin, Boston: DE GRUYTER, 1997. http://dx.doi.org/10.1515/9783110944648.
Der volle Inhalt der QuelleTenenbaum, Gerald. Introduction à la théorie analytique et probabiliste des nombres. 2. Aufl. Paris: Société Mathématique de France, 1995.
Den vollen Inhalt der Quelle findenJonas, Kubilius, Laurinčikas Antanas, Manstavičius E und Stakėnas V, Hrsg. Analytic and probabilistic methods in number theory: Proceedings of the second international conference in honour of J. Kubilius, Palanga, Lithuania, 23-27 September 1996. Vilnius, Lithuania: TEV, 1997.
Den vollen Inhalt der Quelle finden1940-, Zhang Wen-Bin, Hrsg. Number theory arising from finite fields: Analytic and probabilistic theory. New York: Marcel Dekker, 2001.
Den vollen Inhalt der Quelle findenProbability: A graduate course. New York: Springer, 2013.
Den vollen Inhalt der Quelle findenBoultbee, R. Rounded numbers. [Toronto, Ont.?: s.n.], 1990.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Probabilistic number theory"
Murty, M. Ram, und V. Kumar Murty. „Probabilistic Number Theory“. In The Mathematical Legacy of Srinivasa Ramanujan, 149–53. India: Springer India, 2012. http://dx.doi.org/10.1007/978-81-322-0770-2_11.
Der volle Inhalt der QuelleBoston, Nigel. „A probabilistic generalization of the Riemann zeta function“. In Analytic Number Theory, 155–62. Boston, MA: Birkhäuser Boston, 1996. http://dx.doi.org/10.1007/978-1-4612-4086-0_8.
Der volle Inhalt der QuelleElliott, P. D. T. A. „Progress in Probabilistic Number Theory“. In Grundlehren der mathematischen Wissenschaften, 423–48. New York, NY: Springer New York, 1985. http://dx.doi.org/10.1007/978-1-4613-8548-6_25.
Der volle Inhalt der QuelleKubilius, Jonas. „Recent Progress in Probabilistic Number Theory“. In Asymptotic Methods in Probability and Statistics with Applications, 507–19. Boston, MA: Birkhäuser Boston, 2001. http://dx.doi.org/10.1007/978-1-4612-0209-7_36.
Der volle Inhalt der QuelleIndlekofer, Karl-Heinz. „A New Method in Probabilistic Number Theory“. In Probability Theory and Applications, 299–308. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2817-9_19.
Der volle Inhalt der QuelleKubilius, J. „On some inequalities in the probabilistic number theory“. In Lecture Notes in Mathematics, 214–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0078476.
Der volle Inhalt der QuelleGuan, Ji, und Nengkun Yu. „A Probabilistic Logic for Verifying Continuous-time Markov Chains“. In Tools and Algorithms for the Construction and Analysis of Systems, 3–21. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-99527-0_1.
Der volle Inhalt der QuelleDevroye, Luc, László Györfi und Gábor Lugosi. „Uniform Laws of Large Numbers“. In A Probabilistic Theory of Pattern Recognition, 489–506. New York, NY: Springer New York, 1996. http://dx.doi.org/10.1007/978-1-4612-0711-5_29.
Der volle Inhalt der QuelleFullér, Robert, István Á. Harmati und Péter Várlaki. „On Probabilistic Correlation Coefficients for Fuzzy Numbers“. In Aspects of Computational Intelligence: Theory and Applications, 249–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-30668-6_17.
Der volle Inhalt der QuelleNoschinski, Lars. „Proof Pearl: A Probabilistic Proof for the Girth-Chromatic Number Theorem“. In Interactive Theorem Proving, 393–404. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32347-8_27.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Probabilistic number theory"
Flodin, Larkin, und Arya Mazumdar. „Probabilistic Group Testing with a Linear Number of Tests“. In 2021 IEEE International Symposium on Information Theory (ISIT). IEEE, 2021. http://dx.doi.org/10.1109/isit45174.2021.9517841.
Der volle Inhalt der QuellePigott, Ronald. „Advanced Probabilistic Design of Multi-Degree of Freedom Systems Subjected to a Number of Discreet Excitation Frequencies“. In ASME 1997 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-0031.
Der volle Inhalt der QuelleKersten, Daniel, und David C. Knill. „Reflectance estimation and lightness constancy: a probabilistic approach“. In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1987. http://dx.doi.org/10.1364/oam.1987.thc2.
Der volle Inhalt der QuelleHe, Jian Wen, und Ying Min Low. „Probabilistic Assessment of the Clashing Between Flexible Marine Risers“. In ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2010. http://dx.doi.org/10.1115/omae2010-20046.
Der volle Inhalt der QuelleKarge, Jonas, und Sebastian Rudolph. „The More the Worst-Case-Merrier: A Generalized Condorcet Jury Theorem for Belief Fusion“. In 19th International Conference on Principles of Knowledge Representation and Reasoning {KR-2022}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/kr.2022/21.
Der volle Inhalt der QuelleSkelonis, Carl D., M. Brett Shelton und Glenn T. Burney. „A Probabilistic Gas Touched Length Analysis“. In ASME 2011 Power Conference collocated with JSME ICOPE 2011. ASMEDC, 2011. http://dx.doi.org/10.1115/power2011-55298.
Der volle Inhalt der QuelleO’Neil, D. A., J. H. Selverian und K. S. Kim. „Plasticity Considerations in Probabilistic Ceramic-to-Metal Joint Design“. In ASME 1994 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1994. http://dx.doi.org/10.1115/94-gt-229.
Der volle Inhalt der QuelleCui, Wei, und Jianjun Wang. „Probabilistic Analysis of Gas Turbine Disk Multi-Crack Propagation“. In ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/gt2011-45439.
Der volle Inhalt der QuelleZhang, Zhe, Chao Jiang, G. Gary Wang und Xu Han. „An Efficient Reliability Analysis Method for Structures With Epistemic Uncertainty Using Evidence Theory“. In ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/detc2014-35623.
Der volle Inhalt der QuelleBos, Mark, Olger Koop und Ernst Bolt. „Safety Level of a Probabilistic Admittance Policy“. In ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2011. http://dx.doi.org/10.1115/omae2011-49357.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Probabilistic number theory"
Mazzoni, Silvia, Nicholas Gregor, Linda Al Atik, Yousef Bozorgnia, David Welch und Gregory Deierlein. Probabilistic Seismic Hazard Analysis and Selecting and Scaling of Ground-Motion Records (PEER-CEA Project). Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, November 2020. http://dx.doi.org/10.55461/zjdn7385.
Der volle Inhalt der Quelle