Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Private Data Analysis“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Private Data Analysis" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Private Data Analysis"
Shi, Elaine, T. H. Hubert Chan, Eleanor Rieffel und Dawn Song. „Distributed Private Data Analysis“. ACM Transactions on Algorithms 13, Nr. 4 (21.12.2017): 1–38. http://dx.doi.org/10.1145/3146549.
Der volle Inhalt der QuelleAbdul Manap, Nazura, Mohamad Rizal Abd Rahman und Siti Nur Farah Atiqah Salleh. „HEALTH DATA OWNERSHIP IN MALAYSIA PUBLIC AND PRIVATE HEALTHCARE: A LEGAL ANALYSIS OF HEALTH DATA PRIVACY IN THE AGE OF BIG DATA“. International Journal of Law, Government and Communication 7, Nr. 30 (31.12.2022): 33–41. http://dx.doi.org/10.35631/ijlgc.730004.
Der volle Inhalt der QuelleDwork, Cynthia, Frank McSherry, Kobbi Nissim und Adam Smith. „Calibrating Noise to Sensitivity in Private Data Analysis“. Journal of Privacy and Confidentiality 7, Nr. 3 (30.05.2017): 17–51. http://dx.doi.org/10.29012/jpc.v7i3.405.
Der volle Inhalt der QuelleProserpio, Davide, Sharon Goldberg und Frank McSherry. „Calibrating data to sensitivity in private data analysis“. Proceedings of the VLDB Endowment 7, Nr. 8 (April 2014): 637–48. http://dx.doi.org/10.14778/2732296.2732300.
Der volle Inhalt der QuelleMandal, Sanjeev Kumar, Amit Sharma, Santosh Kumar Henge, Sumaira Bashir, Madhuresh Shukla und Asim Tara Pathak. „Secure data encryption key scenario for protecting private data security and privacy“. Journal of Discrete Mathematical Sciences and Cryptography 27, Nr. 2 (2024): 269–81. http://dx.doi.org/10.47974/jdmsc-1881.
Der volle Inhalt der QuelleAppenzeller, Arno, Moritz Leitner, Patrick Philipp, Erik Krempel und Jürgen Beyerer. „Privacy and Utility of Private Synthetic Data for Medical Data Analyses“. Applied Sciences 12, Nr. 23 (01.12.2022): 12320. http://dx.doi.org/10.3390/app122312320.
Der volle Inhalt der QuelleLobo-Vesga, Elisabet, Alejandro Russo und Marco Gaboardi. „A Programming Language for Data Privacy with Accuracy Estimations“. ACM Transactions on Programming Languages and Systems 43, Nr. 2 (Juli 2021): 1–42. http://dx.doi.org/10.1145/3452096.
Der volle Inhalt der QuelleDwork, Cynthia. „A firm foundation for private data analysis“. Communications of the ACM 54, Nr. 1 (Januar 2011): 86–95. http://dx.doi.org/10.1145/1866739.1866758.
Der volle Inhalt der QuelleBos, Joppe W., Kristin Lauter und Michael Naehrig. „Private predictive analysis on encrypted medical data“. Journal of Biomedical Informatics 50 (August 2014): 234–43. http://dx.doi.org/10.1016/j.jbi.2014.04.003.
Der volle Inhalt der QuelleAher, Ujjwala Bal, Amol A. Bhosle, Prachi Palsodkar, Swati Bula Patil, Nishchay Koul und Purva Mange. „Secure data sharing in collaborative network environments for privacy-preserving mechanisms“. Journal of Discrete Mathematical Sciences and Cryptography 27, Nr. 2-B (2024): 855–65. http://dx.doi.org/10.47974/jdmsc-1961.
Der volle Inhalt der QuelleDissertationen zum Thema "Private Data Analysis"
Puglisi, Silvia. „Analysis, modelling and protection of online private data“. Doctoral thesis, Universitat Politècnica de Catalunya, 2017. http://hdl.handle.net/10803/456205.
Der volle Inhalt der QuelleLas comunicaciones en línea generan una cantidad constante de datos que fluyen entre usuarios, servicios y aplicaciones. Esta información es el resultado de las interacciones entre diferentes partes y, una vez recolectada, se utiliza para una gran variedad de propósitos, desde perfiles de marketing hasta recomendaciones de productos, pasando por filtros de noticias y sugerencias de relaciones. La motivación detrás de este trabajo es entender cómo los datos son compartidos y utilizados por los servicios en nombre de los usuarios. Cuando un usuario crea una nueva cuenta en una determinada plataforma, ello crea un contenedor lógico que se utilizará para almacenar la actividad del propio usuario. El servicio tiene como objetivo perfilar al usuario. Por lo tanto, cada vez que se crean, se comparten o se accede a los datos, se recopila y analiza información sobre el comportamiento y los intereses del usuario. Los usuarios producen estos datos, pero desconocen cómo serán manejados por el servicio, o con quién se compartirán. O lo que es más importante, una vez agregados, estos datos podrían revelar, con el tiempo, más información de la que los mismos usuarios habían previsto inicialmente. La información revelada por un perfil podría utilizarse para obtener acceso a otra cuenta o durante ataques de ingeniería social. El objetivo principal de esta tesis es modelar y analizar cómo fluyen los datos de los usuarios entre diferentes aplicaciones y cómo esto representa una amenaza importante para la privacidad. Con el propósito de definir las violaciones de privacidad, se utilizan patrones que permiten clasificar las amenazas e identificar los problemas en los que los datos de los usuarios son mal gestionados. Los datos de los usuarios se modelan como eventos categorizados y se agregan como histogramas de frecuencias relativas de actividad en línea en categorías predefinidas de intereses. Además, se introduce un paradigma basado en hipermedia para modelar las huellas en línea. Esto enfatiza la interacción entre los diferentes eventos generados por el usuario y sus efectos sobre el riesgo medido de privacidad del usuario. Finalmente, se discuten las lecciones aprendidas de la aplicación del paradigma a diferentes escenarios.
Les comunicacions en línia generen una quantitat constant de dades que flueixen entre usuaris, serveis i aplicacions. Aquesta informació és el resultat de les interaccions entre diferents parts i, un cop recol·lectada, s’utilitza per a una gran varietat de propòsits, des de perfils de màrqueting fins a recomanacions de productes, passant per filtres de notícies i suggeriments de relacions. La motivació darrere d’aquest treball és entendre com les dades són compartides i utilitzades pels serveis en nom dels usuaris. Quan un usuari crea un nou compte en una determinada plataforma, això crea un contenidor lògic que s’utilitzarà per emmagatzemar l’activitat del propi usuari. El servei té com a objectiu perfilar a l’usuari. Per tant, cada vegada que es creen, es comparteixen o s’accedeix a les dades, es recopila i analitza informació sobre el comportament i els interessos de l’usuari. Els usuaris produeixen aquestes dades però desconeixen com seran gestionades pel servei, o amb qui es compartiran. O el que és més important, un cop agregades, aquestes dades podrien revelar, amb el temps, més informació de la que els mateixos usuaris havien previst inicialment. La informació revelada per un perfil podria utilitzar-se per accedir a un altre compte o durant atacs d’enginyeria social. L’objectiu principal d’aquesta tesi és modelar i analitzar com flueixen les dades dels usuaris entre diferents aplicacions i com això representa una amenaça important per a la privacitat. Amb el propòsit de definir les violacions de privacitat, s’utilitzen patrons que permeten classificar les amenaces i identificar els problemes en què les dades dels usuaris són mal gestionades. Les dades dels usuaris es modelen com esdeveniments categoritzats i s’agreguen com histogrames de freqüències relatives d’activitat en línia en categories predefinides d’interessos. A més, s’introdueix un paradigma basat en hipermèdia per modelar les petjades en línia. Això emfatitza la interacció entre els diferents esdeveniments generats per l’usuari i els seus efectes sobre el risc mesurat de privacitat de l’usuari. Finalment, es discuteixen les lliçons apreses de l’aplicació del paradigma a diferents escenaris.
Alborch, escobar Ferran. „Private Data Analysis over Encrypted Databases : Mixing Functional Encryption with Computational Differential Privacy“. Electronic Thesis or Diss., Institut polytechnique de Paris, 2025. http://www.theses.fr/2025IPPAT003.
Der volle Inhalt der QuelleIn our current digitalized society, data is ruling the world. But as it is most of the time related to individuals, its exploitation should respect the privacy of the latter. This issue has raised the differential privacy paradigm, which permits to protect individuals when querying databases containing data about them. But with the emergence of cloud computing, it is becoming increasingly necessary to also consider the confidentiality of "on-cloud'' storage confidentiality of such vast databases, using encryption techniques. This thesis studies how to provide both privacy and confidentiality of such outsourced databases by mixing two primitives: computational differential privacy and functional encryption. First, we study the relationship between computational differential privacy and functional encryption for randomized functions in a generic way. We analyze the privacy of the setting where a malicious analyst may access the encrypted data stored in a server, either by corrupting or breaching it, and prove that a secure randomized functional encryption scheme supporting the appropriate family of functions guarantees the computational differential privacy of the system. Second, we construct efficient randomized functional encryption schemes for certain useful families of functions, and we prove them secure in the standard model under well-known assumptions. The families of functions considered are linear functions, used for example in counting queries, histograms and linear regressions, and quadratic functions, used for example in quadratic regressions and hypothesis testing. The schemes built are then used together with the first result to construct encrypted databases for their corresponding family of queries. Finally, we implement both randomized functional encryption schemes to analyze their efficiency. This shows that our constructions are practical for databases with up to 1 000 000 entries in the case of linear queries and databases with up to 10 000 database entries in the case of quadratic queries
Amirbekyan, Artak. „Protocols and Data Structures for Knowledge Discovery on Distributed Private Databases“. Thesis, Griffith University, 2007. http://hdl.handle.net/10072/367447.
Der volle Inhalt der QuelleThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Information and Communication Technology
Science, Environment, Engineering and Technology
Full Text
Nguyen, Mai Phuong. „Contribution of private healthcare to universal health coverage: an investigation of private over public health service utilisation in Vietnam“. Thesis, Queensland University of Technology, 2021. https://eprints.qut.edu.au/225903/1/Mai%20Phuong_Nguyen_Thesis.pdf.
Der volle Inhalt der QuelleKarim, Martia. „Determinants of Venture Capital Investments : A panel data analysis across regions in the United Kingdom“. Thesis, Internationella Handelshögskolan, Högskolan i Jönköping, IHH, Nationalekonomi, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-40179.
Der volle Inhalt der QuelleHabibovic, Sanel. „VIRTUAL PRIVATE NETWORKS : An Analysis of the Performance in State-of-the-Art Virtual Private Network solutions in Unreliable Network Conditions“. Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-17844.
Der volle Inhalt der QuelleCiccarelli, Armand. „An analysis of the impact of wireless technology on public vs. private traffic data collection, dissemination and use“. Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/8817.
Der volle Inhalt der QuelleIncludes bibliographical references (leaves 151-154).
The collection of data concerning traffic conditions (e.g., incidents, travel times, average speed, traffic volumes, etc.) on roadways has traditionally been carried out by those public entities charged with managing traffic flow, responding to incidents, and maintaining the surface of the roadway. Pursuant to this task, public agencies have employed inductive loop detectors, closed circuit television cameras, technology for tracking electronic toll tags, and other surveillance devices, in an effort to monitor conditions on roads within their jurisdictions. The high cost of deploying and maintaining this surveillance equipment has precluded most agencies from collecting data on roads other than freeways and important arterials. In addition, the "point" nature of most commonly utilized surveillance equipment limits both the variety of data available for analysis, as well as its overall accuracy. Consequently, these problems have limited the usefulness of this traffic data, both to the public agencies collecting it, as well as private entities who would like to use it as a resource from which they can generate fee-based traveler information services. Recent Federal Communications Commission (FCC) mandates concerning E-911 have led to the development of new technologies for tracking wireless devices (i.e., cellular phones). Although developed to assist mobile phone companies in meeting the FCC's E-911 mandate, a great deal of interest has arisen concerning their application to the collection of traffic data. That said, the goal of this thesis has been to compare traditional traffic surveillance technologies' capabilities and effectiveness with that of the wireless tracking systems currently under development. Our technical research indicates that these newly developed tracking technologies will eventually be able to provide wider geographic surveillance of roads at less expense than traditional surveillance equipment, as well as collect traffic information that is currently unavailable. Even so, our overall conclusions suggest that due to budgetary, institutional, and/or political constraints, some organizations may find themselves unable to procure this high quality data. Moreover, we believe that even those organizations (both public and private) that find themselves in a position to procure data collected via wireless tracking technology should first consider the needs of their "customers," the strength of the local market for traffic data, and their organization's overall mission, prior to making a final decision.
by Armand J. Ciccarelli, III.
M.C.P.and S.M.
Aronsson, Arvid, und Daniel Falkenström. „The Effects of Capital Income Taxation on Consumption : Panel data analysis of the OECD countries“. Thesis, Jönköping University, IHH, Nationalekonomi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-52920.
Der volle Inhalt der QuelleShimada, Hideki. „Econometric Analysis of Social Interactions and Economic Incentives in Conservation Schemes“. Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263702.
Der volle Inhalt der QuelleLanjouw, Jean Olson. „The private value of patent rights : a dynamic programming and game theoretic analysis of West German patent renewal data, 1953-1988“. Thesis, London School of Economics and Political Science (University of London), 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.527825.
Der volle Inhalt der QuelleBücher zum Thema "Private Data Analysis"
Plotkin, Stephen. Private well water quality data bank feasibility analysis for Massachusetts. Amherst, MA: University of Massachusetts Private Well Water Quality Data Bank Feasiblity Study, 1989.
Den vollen Inhalt der Quelle findenBurnell, Derek. Investment expectations: A unit record analysis of data from the private new capital expenditure survey. Canberra: Australian Bureau of Statistics, 1993.
Den vollen Inhalt der Quelle findenAyele, Gashaw T. Do tax structures optimize private fixed investment in sub-Saharan Africa?: A data envelopment analysis. Addis Ababa, Ethiopia: The Horn Economic and Social Policy Institute, 2015.
Den vollen Inhalt der Quelle findenMario Viola de Azevedo Cunha. Market Integration Through Data Protection: An Analysis of the Insurance and Financial Industries in the EU. Dordrecht: Springer Netherlands, 2013.
Den vollen Inhalt der Quelle findenDa cheng qi ye yan jiu yuan. Min ying jing ji gai bian Zhongguo: Gai ge kai fang 40 nian min ying jing ji zhu yao shu ju jian ming fen xi = Private economy changes China : concise analysis of private economy data 40-years reform and opening up. Beijing Shi: She hui ke xue wen xian chu ban she, 2018.
Den vollen Inhalt der Quelle findenMal'shina, N., und Andrey Garnov. MODERN PRINCIPLES ANALYSIS OF RESOURCE FLOWS IN CRISIS CONDITIONS: CULTURE AND CREATIVE INDUSTRY. xxu: Academus Publishing, 2020. http://dx.doi.org/10.31519/978-1-4946-0018-1.
Der volle Inhalt der QuelleLut, Yuliia. Privacy-Aware Data Analysis: Recent Developments for Statistics and Machine Learning. [New York, N.Y.?]: [publisher not identified], 2022.
Den vollen Inhalt der Quelle findenBruijn, Hans. The Governance of Privacy. NL Amsterdam: Amsterdam University Press, 2021. http://dx.doi.org/10.5117/9789463729673.
Der volle Inhalt der QuelleSloot, Bart, und Aviva Groot, Hrsg. The Handbook of Privacy Studies. NL Amsterdam: Amsterdam University Press, 2018. http://dx.doi.org/10.5117/9789462988095.
Der volle Inhalt der QuelleMunir, Abu Bakar. Privacy and data protection: A comparative analysis with special reference to the Malaysian proposed law. Petaling Jaya, Selangor, Malaysia: Sweet & Maxwell Asia, 2002.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Private Data Analysis"
Zhu, Tianqing, Gang Li, Wanlei Zhou und Philip S. Yu. „Differentially Private Data Analysis“. In Advances in Information Security, 49–65. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62004-6_6.
Der volle Inhalt der QuelleWeiß, Stefanie. „Data analysis and results“. In Determinants of Private Label Attitude, 67–79. Wiesbaden: Springer Fachmedien Wiesbaden, 2015. http://dx.doi.org/10.1007/978-3-658-08672-5_4.
Der volle Inhalt der QuelleRaskhodnikova, Sofya, und Adam Smith. „Private Analysis of Graph Data“. In Encyclopedia of Algorithms, 1–6. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-27848-8_549-1.
Der volle Inhalt der QuelleNissim, Kobbi. „Private Data Analysis via Output Perturbation“. In Privacy-Preserving Data Mining, 383–414. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-70992-5_16.
Der volle Inhalt der QuellePelletier, Mathilde, Nicolas Saunier und Jerome Le Ny. „Differentially Private Analysis of Transportation Data“. In Privacy in Dynamical Systems, 131–55. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0493-8_7.
Der volle Inhalt der QuelleWang, Ke, Benjamin C. M. Fung und Guozhu Dong. „Integrating Private Databases for Data Analysis“. In Intelligence and Security Informatics, 171–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11427995_14.
Der volle Inhalt der QuelleHaire, M. J., und E. H. Gift. „A Guide for Reliability and Maintainability Data Acquisition“. In Risk Analysis in the Private Sector, 377–84. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4613-2465-2_29.
Der volle Inhalt der QuelleThakurta, Abhradeep. „Beyond Worst Case Sensitivity in Private Data Analysis“. In Encyclopedia of Algorithms, 192–99. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-2864-4_547.
Der volle Inhalt der QuelleThakurta, Abhradeep. „Beyond Worst Case Sensitivity in Private Data Analysis“. In Encyclopedia of Algorithms, 1–8. Boston, MA: Springer US, 2014. http://dx.doi.org/10.1007/978-3-642-27848-8_547-1.
Der volle Inhalt der QuelleDwork, Cynthia, Frank McSherry, Kobbi Nissim und Adam Smith. „Calibrating Noise to Sensitivity in Private Data Analysis“. In Theory of Cryptography, 265–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11681878_14.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Private Data Analysis"
Wang, Longfeng, Yutong Liu, Mingyan Wang, Qinghua Chen, Fengting Wang und Jiawei Chen. „Human Travel Behavior Analysis Using Private Car Data“. In 2024 5th International Conference on Artificial Intelligence and Electromechanical Automation (AIEA), 410–14. IEEE, 2024. http://dx.doi.org/10.1109/aiea62095.2024.10692794.
Der volle Inhalt der QuelleZhou, Haiyan. „ASP Cluster analysis of humanistic quality evaluation data for private college students using NET technology and K-Means algorithm“. In 2024 International Conference on Informatics Education and Computer Technology Applications (IECA), 15–20. IEEE, 2024. http://dx.doi.org/10.1109/ieca62822.2024.00010.
Der volle Inhalt der QuelleZainab, Syeda Sana e., und Tahar Kechadi. „Sensitive and Private Data Analysis“. In ICFNDS '19: 3rd International Conference on Future Networks and Distributed Systems. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3341325.3342002.
Der volle Inhalt der QuelleTakabi, Hassan, Samir Koppikar und Saman Taghavi Zargar. „Differentially Private Distributed Data Analysis“. In 2016 IEEE 2nd International Conference on Collaboration and Internet Computing (CIC). IEEE, 2016. http://dx.doi.org/10.1109/cic.2016.038.
Der volle Inhalt der QuelleHossain, Md Tamjid, Shahriar Badsha und Haoting Shen. „Privacy, Security, and Utility Analysis of Differentially Private CPES Data“. In 2021 IEEE Conference on Communications and Network Security (CNS). IEEE, 2021. http://dx.doi.org/10.1109/cns53000.2021.9705022.
Der volle Inhalt der QuelleWang, Ning. „Data-dependent differentially private publication of horizontally partitioned data“. In International Conference on Computational Modeling, Simulation, and Data Analysis (CMSDA 2021), herausgegeben von Fengjie Cen, Christos J. Bouras und Razali Yaakob. SPIE, 2022. http://dx.doi.org/10.1117/12.2627689.
Der volle Inhalt der QuelleZhu, Keyu, Ferdinando Fioretto und Pascal Van Hentenryck. „Post-processing of Differentially Private Data: A Fairness Perspective“. In Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/559.
Der volle Inhalt der QuelleLi, Zhenju, Xuejun Li, Tao Liu, Sheng Yang und Jianwei Xie. „A preliminary data transfer model for private remote sensing cloud“. In 2016 IEEE International Conference on Big Data Analysis (ICBDA). IEEE, 2016. http://dx.doi.org/10.1109/icbda.2016.7509816.
Der volle Inhalt der QuellePustozerova, Anastasia, Jan Baumbach und Rudolf Mayer. „Differentially Private Federated Learning: Privacy and Utility Analysis of Output Perturbation and DP-SGD“. In 2023 IEEE International Conference on Big Data (BigData). IEEE, 2023. http://dx.doi.org/10.1109/bigdata59044.2023.10386466.
Der volle Inhalt der QuelleNissim, Kobbi, Sofya Raskhodnikova und Adam Smith. „Smooth sensitivity and sampling in private data analysis“. In the thirty-ninth annual ACM symposium. New York, New York, USA: ACM Press, 2007. http://dx.doi.org/10.1145/1250790.1250803.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Private Data Analysis"
Young, Andrew Young, Andrew J. Zahuranec Zahuranec, Michelle Winowatan Winowatan und Stefaan G. Verhulst Verhulst. LEVERAGING PRIVATE DATA FOR PUBLIC GOOD: A Descriptive Analysis and Typology of Existing Practices. GovLab, Oktober 2019. http://dx.doi.org/10.15868/socialsector.40380.
Der volle Inhalt der QuelleMcGill, Karis, und Eleanor Turner. Return on Investment Analysis of Private Sector Facilitation Funds for Rwandan Agribusinesses. RTI Press, August 2020. http://dx.doi.org/10.3768/rtipress.2020.rr.0042.2008.
Der volle Inhalt der QuelleDay, Christopher M., Howell Li, Sarah M. L. Hubbard und Darcy M. Bullock. Observations of Trip Generation, Route Choice, and Trip Chaining with Private-Sector Probe Vehicle GPS Data. Purdue University, 2022. http://dx.doi.org/10.5703/1288284317368.
Der volle Inhalt der QuelleSmith, Paul N., David R. J. Gill, Michael J. McAuliffe, Catherine McDougall, James D. Stoney, Christopher J. Vertullo, Christopher J. Wall et al. Analysis of State and Territory Health Data: Supplementary Report. Australian Orthopaedic Association, Oktober 2023. http://dx.doi.org/10.25310/ixwe4642.
Der volle Inhalt der QuelleCoombs, Elizabeth, Orazio J. Bellettini Cedeño und Paul E. Carrillo. Stay Public or Go Private?: A Comparative Analysis of Water Services between Quito and Guayaquil. Inter-American Development Bank, August 2007. http://dx.doi.org/10.18235/0011284.
Der volle Inhalt der QuelleLewis, Peter L., David RJ Gill, Michael J. McAuliffe, Catherine McDougall, James D. Stoney, Christopher J. Vertullo, Christopher J. Wall et al. Analysis of State and Territory Health Data: 2024 Supplementary Report. Australian Orthopaedic Association, Oktober 2024. http://dx.doi.org/10.25310/tgxs9590.
Der volle Inhalt der QuelleJalles, João Tovar, Donghyun Park und Irfan Qureshi. ADB Economics Working Paper Series 737: Public versus Private Investment Multipliers in Emerging Market and Developing Economies: Cross-Country Analysis with a Focus on Asia. Asian Development Bank, August 2024. http://dx.doi.org/10.22617/wps240372-2.
Der volle Inhalt der QuelleAguiar, Angel, Caitlyn Carrico, Thomas Hertel, Zekarias Hussein, Robert McDougall und Badri Narayanan. Extending the GTAP framework for public procurement analysis. GTAP Working Paper, August 2016. http://dx.doi.org/10.21642/gtap.wp82.
Der volle Inhalt der QuelleTawfik, Aly, und Utsav Shah. Analysis of Freight Movements in the San Joaquin Valley. Mineta Transportation Institute, Februar 2023. http://dx.doi.org/10.31979/mti.2023.2131.
Der volle Inhalt der QuelleBonnett, Michaela, Angela Ladetto, Meaghan Kennedy, Jasmine Fernandez und Teri Garstka. Network Analysis of a Mobility Ecosystem in Detroit, MI. Orange Sparkle Ball, Juni 2024. http://dx.doi.org/10.61152/hejw8941https://www.orangesparkleball.com/innovation-library-blog/2024/5/30/sunbelt2024-network-analysis-of-a-mobility-ecosystem-in-detroit-mi.
Der volle Inhalt der Quelle