Dissertationen zum Thema „Prior informatif“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Prior informatif" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Papoutsis, Panayotis. „Potentiel et prévision des temps d'attente pour le covoiturage sur un territoire“. Thesis, Ecole centrale de Nantes, 2021. http://www.theses.fr/2021ECDN0059.
Der volle Inhalt der QuelleThis thesis focuses on the potential and prediction of carpooling waiting times in a territory using statistical learning methods. Five main themes are covered in this manuscript. The first presents quantile regression techniques to predict waiting times. The second details the construction of a workflow based on Geographic Information Systems (GIS) tools in order to fully leverage the carpooling data. In a third part we develop a hierarchical bayesian model in order to predict traffic flows and waiting times. In the fourth part, we propose a methodology for constructing an informative prior by bayesian transfer to improve the prediction of waiting times for a short dataset situation. Lastly, the final theme focuses on the production and industrial exploitation of the bayesian hierarchical model
Bioche, Christèle. „Approximation de lois impropres et applications“. Thesis, Clermont-Ferrand 2, 2015. http://www.theses.fr/2015CLF22626/document.
Der volle Inhalt der QuelleThe purpose of this thesis is to study the approximation of improper priors by proper priors. We define a convergence mode on the positive Radon measures for which a sequence of probability measures could converge to an improper limiting measure. This convergence mode, called q-vague convergence, is independant from the statistical model. It explains the origin of the Jeffreys-Lindley paradox. Then, we focus on the estimation of the size of a population. We consider the removal sampling model. We give necessary and sufficient conditions on the hyperparameters in order to have proper posterior distributions and well define estimate of abundance. In the light of the q-vague convergence, we show that the use of vague priors is not appropriate in removal sampling since the estimates obtained depend crucially on hyperparameters
Pohl, Kilian Maria. „Prior information for brain parcellation“. Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/33925.
Der volle Inhalt der QuelleIncludes bibliographical references (p. 171-184).
To better understand brain disease, many neuroscientists study anatomical differences between normal and diseased subjects. Frequently, they analyze medical images to locate brain structures influenced by disease. Many of these structures have weakly visible boundaries so that standard image analysis algorithms perform poorly. Instead, neuroscientists rely on manual procedures, which are time consuming and increase risks related to inter- and intra-observer reliability [53]. In order to automate this task, we develop an algorithm that robustly segments brain structures. We model the segmentation problem in a Bayesian framework, which is applicable to a variety of problems. This framework employs anatomical prior information in order to simplify the detection process. In this thesis, we experiment with different types of prior information such as spatial priors, shape models, and trees describing hierarchical anatomical relationships. We pose a maximum a posteriori probability estimation problem to find the optimal solution within our framework. From the estimation problem we derive an instance of the Expectation Maximization algorithm, which uses an initial imperfect estimate to converge to a good approximation.
(cont.) The resulting implementation is tested on a variety of studies, ranging from the segmentation of the brain into the three major brain tissue classes, to the parcellation of anatomical structures with weakly visible boundaries such as the thalamus or superior temporal gyrus. In general, our new method performs significantly better than other :standard automatic segmentation techniques. The improvement is due primarily to the seamless integration of medical image artifact correction, alignment of the prior information to the subject, detection of the shape of anatomical structures, and representation of the anatomical relationships in a hierarchical tree.
by Kilian Maria Pohl.
Ph.D.
Ahmed, Syed Ejaz Carleton University Dissertation Mathematics. „Estimation strategies under uncertain prior information“. Ottawa, 1987.
Den vollen Inhalt der Quelle findenSunmola, Funlade Tajudeen. „Optimising learning with transferable prior information“. Thesis, University of Birmingham, 2013. http://etheses.bham.ac.uk//id/eprint/3983/.
Der volle Inhalt der QuelleRen, Shijie. „Using prior information in clinical trial design“. Thesis, University of Sheffield, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.555104.
Der volle Inhalt der QuelleParsley, M. P. „Simultaneous localisation and mapping with prior information“. Thesis, University College London (University of London), 2011. http://discovery.ucl.ac.uk/1318103/.
Der volle Inhalt der QuelleViggh, Herbert E. M. „Surface Prior Information Reflectance Estimation (SPIRE) algorithms“. Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/17564.
Der volle Inhalt der QuelleIncludes bibliographical references (p. 393-396).
In this thesis we address the problem of estimating changes in surface reflectance in hyperspectral image cubes, under unknown multiplicative and additive illumination noise. Rather than using the Empirical Line Method (ELM) or physics-based approaches, we assumed the presence of a prior reflectance image cube and ensembles of typical multiplicative and additive illumination noise vectors, and developed algorithms which estimate reflectance using this prior information. These algorithms were developed under the additional assumptions that the illumination effects were band limited to lower spatial frequencies and that the differences in the surface reflectance from the prior were small in area relative to the scene, and have defined edges. These new algorithms were named Surface Prior Information Reflectance Estimation (SPIRE) algorithms. Spatial SPIRE algorithms that employ spatial processing were developed for six cases defined by the presence or absence of the additive noise, and by whether or not the noise signals are spatially uniform or varying. These algorithms use high-pass spatial filtering to remove the noise effects. Spectral SPIRE algorithms that employ spectral processing were developed and use zero-padded Principal Components (PC) filtering to remove the illumination noise. Combined SPIRE algorithms that use both spatial and spectral processing were also developed. A Selective SPIRE technique that chooses between Combined and Spectral SPIRE reflectance estimates was developed; it maximizes estimation performance on both modified and unmodified pixels. The different SPIRE algorithms were tested on HYDICE airborne sensor hyperspectral data, and their reflectance estimates were compared to those from the physics-based ATmospheric REMoval (ATREM) and the Empirical Line Method atmospheric compensation algorithms. SPIRE algorithm performance was found to be nearly identical to the ELM ground-truth based results. SPIRE algorithms performed better than ATREM overall, and significantly better under high clouds and haze. Minimum-distance classification experiments demonstrated SPIRE's superior performance over both ATREM and ELM in cross-image supervised classification applications. The taxonomy of SPIRE algorithms was presented and suggestions were made concerning which SPIRE algorithm is recommended for various applications.
by Herbert Erik Mattias Viggh.
Ph.D.
Ghadermarzy, Navid. „Using prior support information in compressed sensing“. Thesis, University of British Columbia, 2013. http://hdl.handle.net/2429/44912.
Der volle Inhalt der QuelleLiu, Yang. „Application of prior information to discriminative feature learning“. Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/285558.
Der volle Inhalt der QuelleHotti, Alexandra. „Bayesian insurance pricing using informative prior estimation techniques“. Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-286312.
Der volle Inhalt der QuelleStora, väletablerade försäkringsbolag modellerar sina riskpremier med hjälp av statistiska modeller och data från skadeanmälningar. Eftersom försäkringsbolagen har tillgång till en lång historik av skadeanmälningar, så kan de förutspå sina framtida skadeanmälningskostnader med hög precision. Till skillnad från ett stort försäkringsbolag, har en liten, nyetablerad försäkringsstartup inte tillgång till den mängden data. Det nyetablerade försäkringsbolagets initiala prissättningsmodell kan därför istället byggas genom att direkt estimera parametrarna i en tariff med ett icke statistiskt tillvägagångssätt. Problematiken med en sådan metod är att tariffens parametrar inte kan justerares baserat på bolagets egna skadeanmälningar med klassiska frekvensbaserade prissättningsmetoder. I denna masteruppsats presenteras tre metoder för att estimera en existerande statisk multiplikativ tariff. Estimaten kan användas som en prior i en Bayesiansk riskpremiemodell. Likheten mellan premierna som har satts via den estimerade och den faktiska statiska tariffen utvärderas genom att beräkna deras relativa skillnad. Resultaten från jämförelsen tyder på att priorn kan estimeras med hög precision. De estimerade priorparametrarna kombinerades sedan med startupbolaget Hedvigs skadedata. Posteriorn estimerades sedan med Metropolis and Metropolis-Hastings, vilket är två Markov Chain Monte Carlo simuleringsmetoder. Sammantaget resulterade detta i en prissättningsmetod som kunde utnyttja kunskap från en existerande statisk prismodell, samtidigt som den kunde ta in mer kunskap i takt med att fler skadeanmälningar skedde. Resultaten tydde på att de Bayesianska prissättningsmetoderna kunde förutspå skadekostnader med högre precision jämfört med den statiska tariffen.
Qin, Jing. „Prior Information Guided Image Processing and Compressive Sensing“. Case Western Reserve University School of Graduate Studies / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=case1365020074.
Der volle Inhalt der QuelleKamary, Kaniav. „Lois a priori non-informatives et la modélisation par mélange“. Thesis, Paris Sciences et Lettres (ComUE), 2016. http://www.theses.fr/2016PSLED022/document.
Der volle Inhalt der QuelleOne of the major applications of statistics is the validation and comparing probabilistic models given the data. This branch statistics has been developed since the formalization of the late 19th century by pioneers like Gosset, Pearson and Fisher. In the special case of the Bayesian approach, the comparison solution of models is the Bayes factor, ratio of marginal likelihoods, whatever the estimated model. This solution is obtained by a mathematical reasoning based on a loss function. Despite a frequent use of Bayes factor and its equivalent, the posterior probability of models, by the Bayesian community, it is however problematic in some cases. First, this rule is highly dependent on the prior modeling even with large datasets and as the selection of a prior density has a vital role in Bayesian statistics, one of difficulties with the traditional handling of Bayesian tests is a discontinuity in the use of improper priors since they are not justified in most testing situations. The first part of this thesis deals with a general review on non-informative priors, their features and demonstrating the overall stability of posterior distributions by reassessing examples of [Seaman III 2012].Beside that, Bayes factors are difficult to calculate except in the simplest cases (conjugate distributions). A branch of computational statistics has therefore emerged to resolve this problem with solutions borrowing from statistical physics as the path sampling method of [Gelman 1998] and from signal processing. The existing solutions are not, however, universal and a reassessment of the methods followed by alternative methods is a part of the thesis. We therefore consider a novel paradigm for Bayesian testing of hypotheses and Bayesian model comparison. The idea is to define an alternative to the traditional construction of posterior probabilities that a given hypothesis is true or that the data originates from a specific model which is based on considering the models under comparison as components of a mixture model. By replacing the original testing problem with an estimation version that focus on the probability weight of a given model within a mixture model, we analyze the sensitivity on the resulting posterior distribution of the weights for various prior modelings on the weights and stress that a major appeal in using this novel perspective is that generic improper priors are acceptable, while not putting convergence in jeopardy. MCMC methods like Metropolis-Hastings algorithm and the Gibbs sampler are used. From a computational viewpoint, another feature of this easily implemented alternative to the classical Bayesian solution is that the speeds of convergence of the posterior mean of the weight and of the corresponding posterior probability are quite similar.In the last part of the thesis we construct a reference Bayesian analysis of mixtures of Gaussian distributions by creating a new parameterization centered on the mean and variance of those models itself. This enables us to develop a genuine non-informative prior for Gaussian mixtures with an arbitrary number of components. We demonstrate that the posterior distribution associated with this prior is almost surely proper and provide MCMC implementations that exhibit the expected component exchangeability. The analyses are based on MCMC methods as the Metropolis-within-Gibbs algorithm, adaptive MCMC and the Parallel tempering algorithm. This part of the thesis is followed by the description of R package named Ultimixt which implements a generic reference Bayesian analysis of unidimensional mixtures of Gaussian distributions obtained by a location-scale parameterization of the model. This package can be applied to produce a Bayesian analysis of Gaussian mixtures with an arbitrary number of components, with no need to specify the prior distribution
Li, Zhonggai. „Objective Bayesian Analysis of Kullback-Liebler Divergence of two Multivariate Normal Distributions with Common Covariance Matrix and Star-shape Gaussian Graphical Model“. Diss., Virginia Tech, 2008. http://hdl.handle.net/10919/28121.
Der volle Inhalt der QuellePh. D.
Walter, Gero. „Generalized Bayesian inference under prior-data conflict“. Diss., Ludwig-Maximilians-Universität München, 2013. http://nbn-resolving.de/urn:nbn:de:bvb:19-170598.
Der volle Inhalt der QuelleDas Thema dieser Dissertation ist die Generalisierung der Bayes-Inferenz durch die Verwendung von unscharfen oder intervallwertigen Wahrscheinlichkeiten. Ein besonderer Fokus liegt dabei auf dem Modellverhalten in dem Fall, dass Vorwissen und beobachtete Daten in Konflikt stehen. Die Bayes-Inferenz ist einer der Hauptansätze zur Herleitung von statistischen Inferenzmethoden. In diesem Ansatz muss (eventuell subjektives) Vorwissen über die Modellparameter in einer sogenannten Priori-Verteilung (kurz: Priori) erfasst werden. Alle Inferenzaussagen basieren dann auf der sogenannten Posteriori-Verteilung (kurz: Posteriori), welche mittels des Satzes von Bayes berechnet wird und das Vorwissen und die Informationen in den Daten zusammenfasst. Wie eine Priori-Verteilung in der Praxis zu wählen sei, ist dabei stark umstritten. Ein großer Teil der Literatur befasst sich mit der Bestimmung von sogenannten nichtinformativen Prioris. Diese zielen darauf ab, den Einfluss der Priori auf die Posteriori zu eliminieren oder zumindest zu standardisieren. Falls jedoch nur wenige Daten zur Verfügung stehen, oder diese nur wenige Informationen in Bezug auf die Modellparameter bereitstellen, kann es hingegen nötig sein, spezifische Priori-Informationen in ein Modell einzubeziehen. Außerdem können sogenannte Shrinkage-Schätzer, die in frequentistischen Ansätzen häufig zum Einsatz kommen, als Bayes-Schätzer mit informativen Prioris angesehen werden. Wenn spezifisches Vorwissen zur Bestimmung einer Priori genutzt wird (beispielsweise durch eine Befragung eines Experten), aber die Stichprobengröße nicht ausreicht, um eine solche informative Priori zu überstimmen, kann sich ein Konflikt zwischen Priori und Daten ergeben. Dieser kann sich darin äußern, dass die beobachtete (und von eventuellen Ausreißern bereinigte) Stichprobe Parameterwerte impliziert, die aus Sicht der Priori äußerst überraschend und unerwartet sind. In solch einem Fall kann es unklar sein, ob eher das Vorwissen oder eher die Validität der Datenerhebung in Zweifel gezogen werden sollen. (Es könnten beispielsweise Messfehler, Kodierfehler oder eine Stichprobenverzerrung durch selection bias vorliegen.) Zweifellos sollte sich ein solcher Konflikt in der Posteriori widerspiegeln und eher vorsichtige Inferenzaussagen nach sich ziehen; die meisten Statistiker würden daher davon ausgehen, dass sich in solchen Fällen breitere Posteriori-Kredibilitätsintervalle für die Modellparameter ergeben. Bei Modellen, die auf der Wahl einer bestimmten parametrischen Form der Priori basieren, welche die Berechnung der Posteriori wesentlich vereinfachen (sogenannte konjugierte Priori-Verteilungen), wird ein solcher Konflikt jedoch einfach ausgemittelt. Dann werden Inferenzaussagen, die auf einer solchen Posteriori basieren, den Anwender in falscher Sicherheit wiegen. In dieser problematischen Situation können Intervallwahrscheinlichkeits-Methoden einen fundierten Ausweg bieten, indem Unsicherheit über die Modellparameter mittels Mengen von Prioris beziehungsweise Posterioris ausgedrückt wird. Neuere Erkenntnisse aus Risikoforschung, Ökonometrie und der Forschung zu künstlicher Intelligenz, die die Existenz von verschiedenen Arten von Unsicherheit nahelegen, unterstützen einen solchen Modellansatz, der auf der Feststellung aufbaut, dass die auf den Ansätzen von Kolmogorov oder de Finetti basierende übliche Wahrscheinlichkeitsrechung zu restriktiv ist, um diesen mehrdimensionalen Charakter von Unsicherheit adäquat einzubeziehen. Tatsächlich kann in diesen Ansätzen nur eine der Dimensionen von Unsicherheit modelliert werden, nämlich die der idealen Stochastizität. In der vorgelegten Dissertation wird untersucht, wie sich Mengen von Prioris für Stichproben aus Exponentialfamilien effizient beschreiben lassen. Wir entwickeln Modelle, die eine ausreichende Flexibilität gewährleisten, sodass eine Vielfalt von Ausprägungen von partiellem Vorwissen beschrieben werden kann. Diese Modelle führen zu vorsichtigen Inferenzaussagen, wenn ein Konflikt zwischen Priori und Daten besteht, und ermöglichen dennoch präzisere Aussagen für den Fall, dass Priori und Daten im Wesentlichen übereinstimmen, ohne dabei die Einsatzmöglichkeiten in der statistischen Praxis durch eine zu hohe Komplexität in der Anwendung zu erschweren. Wir ermitteln die allgemeinen Inferenzeigenschaften dieser Modelle, die sich durch einen klaren und nachvollziehbaren Zusammenhang zwischen Modellunsicherheit und der Präzision von Inferenzaussagen auszeichnen, und untersuchen Anwendungen in verschiedenen Bereichen, unter anderem in sogenannten common-cause-failure-Modellen und in der linearen Bayes-Regression. Zudem werden die in dieser Dissertation entwickelten Modelle mit anderen Intervallwahrscheinlichkeits-Modellen verglichen und deren jeweiligen Stärken und Schwächen diskutiert, insbesondere in Bezug auf die Präzision von Inferenzaussagen bei einem Konflikt von Vorwissen und beobachteten Daten.
Stroeymeyt, Nathalie. „Information gathering prior to emigration in house-hunting ants“. Thesis, University of Bristol, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.529832.
Der volle Inhalt der QuelleStewart, Alexander D. „Localisation using the appearance of prior structure“. Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:4ee889ac-e8e3-4000-ae23-a9d7f84fcd65.
Der volle Inhalt der QuelleGiménez, Febrer Pere Joan. „Matrix completion with prior information in reproducing kernel Hilbert spaces“. Doctoral thesis, Universitat Politècnica de Catalunya, 2021. http://hdl.handle.net/10803/671718.
Der volle Inhalt der QuelleA matrix completion, l'objectiu és recuperar una matriu a partir d'un subconjunt d'entrades observables. Els mètodes més eficaços es basen en la idea que la matriu desconeguda és de baix rang. Al ser de baix rang, les seves entrades són funció d'uns pocs coeficients que poden ser estimats sempre que hi hagi suficients observacions. Així, a matrix completion la solució s'obté com la matriu de mínim rang que millor s'ajusta a les entrades visibles. A més de baix rang, la matriu desconeguda pot tenir altres propietats estructurals que poden ser aprofitades en el procés de recuperació. En una matriu suau, pot esperar-se que les entrades en posicions pròximes tinguin valor similar. Igualment, grups de columnes o files poden saber-se similars. Aquesta informació relacional es proporciona a través de diversos mitjans com ara matrius de covariància o grafs, amb l'inconvenient que aquests no poden ser derivats a partir de la matriu de dades ja que està incompleta. Aquesta tesi tracta sobre matrix completion amb informació prèvia, i presenta metodologies que poden aplicar-se a diverses situacions. En la primera part, les columnes de la matriu desconeguda s'identifiquen com a senyals en un graf conegut prèviament. Llavors, la matriu d'adjacència del graf s'usa per calcular un punt inicial per a un algorisme de gradient pròxim amb la finalitat de reduir les iteracions necessàries per arribar a la solució. Després, suposant que els senyals són suaus, la matriu laplaciana del graf s'incorpora en la formulació del problema amb tal forçar suavitat en la solució. Això resulta en una reducció de soroll en la matriu observada i menor error, la qual cosa es demostra a través d'anàlisi teòrica i simulacions numèriques. La segona part de la tesi introdueix eines per a aprofitar informació prèvia mitjançant reproducing kernel Hilbert spaces. Atès que un kernel mesura la similitud entre dos punts en un espai, permet codificar qualsevol tipus d'informació tal com vectors de característiques, diccionaris o grafs. En associar cada columna i fila de la matriu desconeguda amb un element en un set, i definir un parell de kernels que mesuren similitud entre columnes o files, les entrades desconegudes poden ser extrapolades mitjançant les funcions de kernel. Es presenta un mètode basat en regressió amb kernels, amb dues variants addicionals que redueixen el cost computacional. Els mètodes proposats es mostren competitius amb tècniques existents, especialment quan el nombre d'observacions és molt baix. A més, es detalla una anàlisi de l'error quadràtic mitjà i l'error de generalització. Per a l'error de generalització, s'adopta el context transductiu, el qual mesura la capacitat d'un algorisme de transferir informació d'un set de mostres etiquetades a un set no etiquetat. Després, es deriven cotes d'error per als algorismes proposats i existents fent ús de la complexitat de Rademacher, i es presenten proves numèriques que confirmen els resultats teòrics. Finalment, la tesi explora la qüestió de com triar les entrades observables de la matriu per a minimitzar l'error de recuperació de la matriu completa. Una estratègia de mostrejat passiva és proposada, la qual implica que no és necessari conèixer cap etiqueta per a dissenyar la distribució de mostreig. Només les funcions de kernel són necessàries. El mètode es basa en construir la millor aproximació de Nyström a la matriu de kernel mostrejant les columnes segons la seva leverage score, una mètrica que apareix de manera natural durant l'anàlisi teòric.
Poulsen, Rachel Lynn. „XPRIME: A Method Incorporating Expert Prior Information into Motif Exploration“. BYU ScholarsArchive, 2009. https://scholarsarchive.byu.edu/etd/2083.
Der volle Inhalt der QuelleGuo, Linyi. „Constructing an Informative Prior Distribution of Noises in Seasonal Adjustment“. Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/41069.
Der volle Inhalt der QuelleJohnson, Robert Spencer. „Incorporation of prior information into independent component analysis of FMRI“. Thesis, University of Oxford, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.711637.
Der volle Inhalt der QuelleOlsen, Catharina. „Causal inference and prior integration in bioinformatics using information theory“. Doctoral thesis, Universite Libre de Bruxelles, 2013. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209401.
Der volle Inhalt der QuelleAnother important problem in bioinformatics is the question of how the inferred networks’ quality can be evaluated. The current best practice is a two step procedure. In the first step, the highest scoring interactions are compared to known interactions stored in biological databases. The inferred networks passes this quality assessment if there is a large overlap with the known interactions. In this case, a second step is carried out in which unknown but high scoring and thus promising new interactions are validated ’by hand’ via laboratory experiments. Unfortunately when integrating prior knowledge in the inference procedure, this validation procedure would be biased by using the same information in both the inference and the validation. Therefore, it would no longer allow an independent validation of the resulting network.
The main contribution of this thesis is a complete computational framework that uses experimental knock down data in a cross-validation scheme to both infer and validate directed networks. Its components are i) a method that integrates genomic data and prior knowledge to infer directed networks, ii) its implementation in an R/Bioconductor package and iii) a web application to retrieve prior knowledge from PubMed abstracts and biological databases. To infer directed networks from genomic data and prior knowledge, we propose a two step procedure: First, we adapt the pairwise feature selection strategy mRMR to integrate prior knowledge in order to obtain the network’s skeleton. Then for the subsequent orientation phase of the algorithm, we extend a criterion based on interaction information to include prior knowledge. The implementation of this method is available both as part of the prior retrieval tool Predictive Networks and as a stand-alone R/Bioconductor package named predictionet.
Furthermore, we propose a fully data-driven quantitative validation of such directed networks using experimental knock-down data: We start by identifying the set of genes that was truly affected by the perturbation experiment. The rationale of our validation procedure is that these truly affected genes should also be part of the perturbed gene’s childhood in the inferred network. Consequently, we can compute a performance score
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Jiang, Xueyan. „Integrating prior knowledge into factorization approaches for relational learning“. Diss., Ludwig-Maximilians-Universität München, 2014. http://nbn-resolving.de/urn:nbn:de:bvb:19-178640.
Der volle Inhalt der QuelleWang, Chunlai [Verfasser], und Bin [Akademischer Betreuer] Yang. „Object-level image segmentation with prior information / Chunlai Wang ; Betreuer: Bin Yang“. Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2019. http://d-nb.info/1195529422/34.
Der volle Inhalt der QuelleGursoy, Dogan. „Development of a Travelers' Information Search Behavior Model“. Diss., Virginia Tech, 2001. http://hdl.handle.net/10919/29970.
Der volle Inhalt der QuellePh. D.
Kubes, Milena. „Use of prior knowledge in integration of information from technical materials“. Thesis, McGill University, 1988. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=75962.
Der volle Inhalt der QuelleA theoretical model of experts' knowledge was developed from a semantic analysis of expert-produced texts. This "expert model" was used to evaluate the extent of students' theoretical knowledge of photosynthesis, and its accessibility while applying it to the experimental tasks. College students and university graduate students served as subjects in the study, permitting a contrast of groups varying in prior knowledge of and expertise in chemistry.
Statistical analyses of data obtained from coding subjects' verbal protocols against text propositions and the expert model revealed that prior knowledge and comprehension contribute significantly to predicting knowledge integration, but they are not sufficient for this process to take place. It appears that qualitative aspects and specific characteristics of subjects' knowledge structure contribute to the process of integration, not simply the amount of accumulated knowledge. There was also evidence that there are specific inferential processes unique to knowledge integration that differentiate it from test comprehension. Cues manifested their effects on performance on comprehension tasks and integrative tasks only through their interactions with other factors. Furthermore, it was found that textual complexity placed specific constraints on students' performance: the application of textual information to the integrative tasks and students' ability to build conceptual frame representations based on text propositions depended on the complexity of the textual material. (Abstract shortened with permission of author.)
Ng, Kwai-sang Sam. „The use of prior information for the reduction of operation anxiety“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1998. http://hub.hku.hk/bib/B29726499.
Der volle Inhalt der QuelleHargreaves, Brock Edward. „Sparse signal recovery : analysis and synthesis formulations with prior support information“. Thesis, University of British Columbia, 2014. http://hdl.handle.net/2429/46448.
Der volle Inhalt der QuellePopov, Dmitriy. „Iteratively reweighted least squares minimization with prior information a new approach“. Master's thesis, University of Central Florida, 2011. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4822.
Der volle Inhalt der QuelleID: 030646220; System requirements: World Wide Web browser and PDF reader.; Mode of access: World Wide Web.; Thesis (M.S.)--University of Central Florida, 2011.; Includes bibliographical references (p. 37-38).
M.S.
Masters
Mathematics
Sciences
Mathematical Science
Song, Qi. „Globally optimal image segmentation incorporating region, shape prior and context information“. Diss., University of Iowa, 2012. https://ir.uiowa.edu/etd/2989.
Der volle Inhalt der QuelleFronczyk, Kassandra M. „Development of Informative Priors in Microarray Studies“. Diss., CLICK HERE for online access, 2007. http://contentdm.lib.byu.edu/ETD/image/etd2031.pdf.
Der volle Inhalt der QuelleXu, Jian. „Iterative Aggregation of Bayesian Networks Incorporating Prior Knowledge“. Miami University / OhioLINK, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=miami1105563019.
Der volle Inhalt der QuelleMacenko, Marc D. „Eigenimage-based Robust Image Segmentation Using Level Sets“. Ohio University / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1155841672.
Der volle Inhalt der QuelleAlexander, Richard David. „Insider information trading analysis of Defense companies prior to major contract awards“. Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1993. http://handle.dtic.mil/100.2/ADA277238.
Der volle Inhalt der QuelleSirisuk, Phaophak. „Transformation methods and partial prior information for blind system identification and equalisation“. Thesis, Imperial College London, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.326273.
Der volle Inhalt der QuelleBasevi, Hector Richard Abraham. „Use of prior information and probabilistic image reconstruction for optical tomographic imaging“. Thesis, University of Birmingham, 2015. http://etheses.bham.ac.uk//id/eprint/5876/.
Der volle Inhalt der QuelleEtta-AkinAina, Florence Ebam. „Notetaking in lectures : the relationship between prior knowledge, information uptake and comprehension“. Thesis, University College London (University of London), 1988. http://discovery.ucl.ac.uk/10007370/.
Der volle Inhalt der QuelleRojas, Temistocles Simon. „Controlling realism and uncertainty in reservoir models using intelligent sedimentological prior information“. Thesis, Heriot-Watt University, 2014. http://hdl.handle.net/10399/2751.
Der volle Inhalt der QuelleFaye, Papa Abdoulaye. „Planification et analyse de données spatio-temporelles“. Thesis, Clermont-Ferrand 2, 2015. http://www.theses.fr/2015CLF22638/document.
Der volle Inhalt der QuelleSpatio-temporal modeling allows to make the prediction of a regionalized variable at unobserved points of a given field, based on the observations of this variable at some points of field at different times. In this thesis, we proposed a approach which combine numerical and statistical models. Indeed by using the Bayesian methods we combined the different sources of information : spatial information provided by the observations, temporal information provided by the black-box and the prior information on the phenomenon of interest. This approach allowed us to have a good prediction of the variable of interest and a good quantification of incertitude on this prediction. We also proposed a new method to construct experimental design by establishing a optimality criterion based on the uncertainty and the expected value of the phenomenon
Ghanbari, Mahsa [Verfasser]. „Association measures and prior information in the reconstruction of gene networks / Mahsa Ghanbari“. Berlin : Freie Universität Berlin, 2016. http://d-nb.info/1104733757/34.
Der volle Inhalt der QuelleWirfält, Petter. „Exploiting Prior Information in Parametric Estimation Problems for Multi-Channel Signal Processing Applications“. Doctoral thesis, KTH, Signalbehandling, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-134034.
Der volle Inhalt der QuelleDenna doktorsavhandling behandlar parameterestimeringsproblem inom flerkanals-signalbehandling. Den gemensamma förutsättningen för dessa problem är att det finns information om de sökta parametrarna redan innan data analyseras; tanken är att på ett så finurligt sätt som möjligt använda denna kunskap för att förbättra skattningarna av de okända parametrarna. I en uppsats studeras kovariansmatrisskattning när det är känt att den sanna kovariansmatrisen har Kronecker- och Toeplitz-struktur. Baserat på denna kunskap utvecklar vi en metod som säkerställer att även skattningarna har denna struktur, och vi kan visa att den föreslagna skattaren har bättre prestanda än existerande metoder. Vi kan också visa att skattarens varians når Cram\'er-Rao-gränsen (CRB). Vi studerar vidare olika sorters förhandskunskap i riktningsbestämningsscenariot: först i det fall då riktningarna till ett antal av sändarna är kända. Sedan undersöker vi fallet då vi även vet något om kovariansen mellan de mottagna signalerna, nämligen att vissa (eller alla) signaler är okorrelerade. Det visar sig att just kombinationen av förkunskap om både korrelation och riktning är speciellt betydelsefull, och genom att utnyttja denna kunskap på rätt sätt kan vi skapa skattare som är mycket noggrannare än tidigare möjligt. Vi härleder även CRB för fall med denna förhandskunskap, och vi kan visa att de föreslagna skattarna är effektiva. Slutligen behandlar vi även frekvensskattning. I detta problem är data en en-dimensionell temporal sekvens som vi modellerar som en spatiell fler-kanalssignal. Fördelen med denna modelleringsstrategi är att vi kan använda liknande metoder i estimatorerna som vid sensor-signalbehandlingsproblemen. Vi utnyttjar återigen förhandskunskap om källsignalerna: i ett av bidragen är antagandet att vissa frekvenser är kända, och vi modifierar en existerande metod för att ta hänsyn till denna kunskap. Genom att tillämpa den föreslagna metoden på experimentell data visar vi metodens användbarhet. Det andra bidraget inom detta område studerar data som erhålls från exempelvis experiment inom kärnmagnetisk resonans. Vi introducerar en ny modelleringsmetod för sådan data och utvecklar en algoritm för att skatta de önskade parametrarna i denna modell. Vår algoritm är betydligt snabbare än existerande metoder, och skattningarna är tillräckligt noggranna för typiska tillämpningar.
QC 20131115
Lurz, Kristina [Verfasser], und Rainer [Gutachter] Göb. „Confidence and Prediction under Covariates and Prior Information / Kristina Lurz. Gutachter: Rainer Göb“. Würzburg : Universität Würzburg, 2015. http://d-nb.info/111178423X/34.
Der volle Inhalt der QuelleTso, Chak Hau Michael. „The Relative Importance of Head, Flux and Prior Information in Hydraulic Tomography Analysis“. Thesis, The University of Arizona, 2015. http://hdl.handle.net/10150/556860.
Der volle Inhalt der QuelleStegmaier, Johannes [Verfasser]. „New Methods to Improve Large-Scale Microscopy Image Analysis with Prior Knowledge and Uncertainty / Johannes Stegmaier“. Karlsruhe : KIT Scientific Publishing, 2017. http://www.ksp.kit.edu.
Der volle Inhalt der QuelleGeorgiou, Christina Nefeli. „Constructing informative Bayesian priors to improve SLAM map quality“. Thesis, University of Sheffield, 2016. http://etheses.whiterose.ac.uk/17167/.
Der volle Inhalt der QuelleReyland, John M. „Towards Wiener system identification with minimum a priori information“. Diss., University of Iowa, 2011. https://ir.uiowa.edu/etd/1066.
Der volle Inhalt der QuelleKann, Lennart [Verfasser], und Rainer [Gutachter] Göb. „Statistical Failure Prediction with an Account for Prior Information / Lennart Kann ; Gutachter: Rainer Göb“. Würzburg : Universität Würzburg, 2020. http://d-nb.info/1211959651/34.
Der volle Inhalt der QuelleZhou, Wei. „XPRIME-EM: Eliciting Expert Prior Information for Motif Exploration Using the Expectation-Maximization Algorithm“. BYU ScholarsArchive, 2012. https://scholarsarchive.byu.edu/etd/3589.
Der volle Inhalt der QuelleBai, Junjie. „Efficient optimization for labeling problems with prior information: applications to natural and medical images“. Diss., University of Iowa, 2016. https://ir.uiowa.edu/etd/3045.
Der volle Inhalt der QuelleSchabert, Antek. „Integrating the use of prior information into Graph-SLAM with NDTregistration for loop detection“. Thesis, Örebro universitet, Institutionen för naturvetenskap och teknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-61379.
Der volle Inhalt der Quelle